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WHAT IS OPENCL

Open Computing Language (OpenCL) is a framework
• For writing parallel computing programs that execute 

across heterogeneous platforms

OpenCL is a programming model
• To fulfill parallel computing thought in the Heterogeneous 

Computing era

OpenCL includes
• Language for writing Kernels
• APIs to use and control the platform
• Compilers for cross-platform binary generation

OpenCL is an open standard 
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PROGRAMMING MODEL EVOLUTION
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WHAT’S HETEROGENEOUS COMPUTING

Heterogeneous computing systems refer to electronic systems 
that use a variety of different types of computational units with 
different instruction set architectures (ISAs).

Compute units are:
General-purpose processor
• Multi-core CPUs
Special-purpose processor 
• Graphics Processing Unit (GPU)
• Digital Signal Processor (DSP)
• Field-Programmable Gate Array (FPGA)
• Custom acceleration logic (application-specific integrated 

circuit (ASIC))
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TYPICAL HETEROGENEOUS SYSTEM – CPU + dGPU

CPU + dGPU

Common form factor of recent GPGPU 
2-16 x86 cores
1-4 GPU cards
Tens of TFLOPS

Distributed memory system between CPU and GPU
PCI-E communication as a bottleneck
Very fine granularity parallelism needed
Expert programmer but better learning curve than Cell B.E
Kinds of programming model supported, CG/CUDA/OpenCL/C++ 
AMP
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TYPICAL HETEROGENEOUS SYSTEM – AMD HSA APU

AMD APU, codename Kevari

Third generation APU chip
Up to 4 x86 general purpose core
Combine GPU into the single die
More than 1TFLOPS single precision float operation

Unified memory system between CPU and GPU
Industry standard programming model – OpenCL
Kinds of high level programming languages support, C/C++/Java, 
etc
Way to future Full HSA enablement.
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EVOLUTION OF HETEROGENEOUS COMPUTING
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 Mainstream programmers
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 Task parallel runtimes 
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GPU COMPUTE CAPABILITY IS MORE THAN               THAT OF THE CPU
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AN OPENCL STANDARD

Open Standard

Cross Platform

Multi-Vendor

Royalty Free

Broad ISV Support

CPUs
Multiple cores driving 

performance 
increases

GPUs
Increasingly general 

purpose data-parallel 
computing

Graphics 
APIs and 
Shading 

Languages

Multi-processor 
programming –

e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCLTM is a programming framework for heterogeneous compute resources



|   INTRODUCTION TO OPENCL |   OCTOBER 23, 2013 |   PUBLIC12

AN OPENCL STANDARD
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APAC

Market data provided by Evans Data Corporation |  June 2011

OPENCL GAINING MOMENTUM
N.America
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FUNDAMENTALS FOR OPENCL PROGRAMMING

 Parallel computing thinking

‒ Parallel computing thinking is a must-have for OpenCL programming on GPU devices which work as a many-core 
computing device

 Knowledge of GPU architecture

‒ GPU has a quite different architectural philosophy against CPU

 Ideas of controlling and cooperating heterogeneous devices

‒ Heterogeneous Computing is not like parallel computing on a SMP device

‒ Developers should carefully control the different part of this system

‒ And coordinate them smoothly

‒ Will covered by OpenCL programming basics section
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PARALLELISM

 Parallelism describes the potential to complete multiple parts of a problem at the same time

 In order to exploit parallelism, we have to have the physical resources (i.e. hardware) to work on more 
than one thing at a time

 There are different types of parallelism that are important for GPU computing:

‒ Task parallelism – the ability to execute different tasks within a problem at the same time

‒ Data parallelism – the ability to execute parts of the same task (i.e. different data) at the same time
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PARALLELISM

 As an analogy, think about a farmer who hires workers to pick apples from an orchard of trees

‒ The workers that do the apple picking are the (hardware) processing elements

‒ The trees are the tasks to be executed

‒ The apples are the data to be operated on
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PARALLELISM

 The serial approach would be to have one worker pick all of the apples from each tree

‒ After one tree is completely picked, the worker moves on to the next tree and completes it as well
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PARALLELISM

 If the workers uses both of his arms to pick apples, he can grab two at once

‒ This represents data parallel hardware, and would allow each task to be completed quicker

‒ A worker with more than two arms could pick even more apples
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PARALLELISM

 If more workers were hired, each worker could pick apples from a different tree

‒ This represents task parallelism, and although each task takes the same time as in the serial version, many are 
accomplished in parallel
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DECOMPOSITION

 For non-trivial problems, it helps to have more formal concepts for determining parallelism

 When we think about how to parallelize a program we use the concepts of decomposition:

‒ Task decomposition: dividing the algorithm into individual tasks (don’t focus on data)

‒ In the previous example the goal is to pick apples from trees, so clearing a tree would be a task

‒ Data decomposition: dividing a data set into discrete chunks that can be operated on in parallel

‒ In the previous example we can pick a different apple from the tree until it is cleared, so apples are the unit of data
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TASK DECOMPOSITION

 Task decomposition reduces an algorithm to functionally independent parts

 Tasks may have dependencies on other tasks

‒ If the input of task B is dependent on the output of task A, then task B is dependent on task A

‒ Tasks that don’t have dependencies (or whose dependencies are completed) can be executed at any time to achieve 
parallelism

‒ Task dependency graphs are used to describe the relationship between tasks

A

B

A

C

B

B is dependent on A

A and B are independent 
of each other

C is dependent on A and B
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TASK DEPENDENCY GRAPHS

 We can create a simple task dependency graph for baking cookies

‒ Any tasks that are not connected via the graph can be executed in parallel (such as preheating the oven and 
shopping for groceries)

Preheat the 
oven

Shop for 
groceries

Combine the 
ingredients

Bake

Eat
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OUTPUT/INPUT DATA DECOMPOSITION

 For most scientific and engineering applications, data is decomposed based on the output data

‒ Each output pixel of an image convolution is obtained by applying a filter to a region of input pixels

‒ Each output element of a matrix multiplication is obtained by multiplying a row by a column of the input matrices

 This technique is valid any time the algorithm is based on one-to-one or many-to-one functions

 Input data decomposition is similar, except that it makes sense when the algorithm is a one-to-many 
function

‒ A histogram is created by placing each input datum into one of a fixed number of bins

‒ A search function may take a string as input and look for the occurrence of various substrings

 For these types of applications, each thread creates a “partial count” of the output, and synchronization, 
atomic operations, or another task are required to compute the final result
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PARALLEL COMPUTING

 The choice of how to decompose a problem is based solely on the algorithm

 However, when actually implementing a parallel algorithm, both hardware and software considerations 
must be taken into account

 There are both hardware and software approaches to parallelism

 Much of the 1990s was spent on getting CPUs to automatically take advantage of Instruction Level 
Parallelism (ILP)

‒ Multiple instructions (without dependencies) are issued and executed in parallel

‒ Automatic hardware parallelization will not be considered for the remainder of the lecture 

 Higher-level parallelism (e.g. threading) cannot be done automatically, so software constructs are required 
for programmers to tell the hardware where parallelism exists

‒ When parallel programming, the programmer must choose a programming model and parallel hardware that are 
suited for the problem
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PARALLEL HARDWARE

 Hardware is generally better suited for some types of parallelism more than others

 Currently, GPUs are comprised of many independent “processors” that have SIMD processing elements

‒ One task is run at a time on the GPU

‒ Loop strip mining (next slide) is used to split a data parallel task between independent processors

‒ Every instruction must be data parallel to take full advantage of the GPU’s SIMD hardware

‒ SIMD hardware is discussed later in the lecture

Hardware type Examples Parallelism

Multi-core superscalar processors Phenom II CPU Task

Vector or SIMD processors SSE units (x86 CPUs) Data

Multi-core SIMD processors Radeon 7970 GPU Data
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LOOP STRIP MINING

 Loop strip mining is a loop-transformation technique that partitions the iterations of a loop so that 
multiple iterations can be:

‒ executed at the same time (vector/SIMD units), 

‒ split between different processing units (multi-core CPUs),

‒ or both (GPUs)

 An example with loop strip mining is shown in the following slides
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PARALLEL SOFTWARE – SPMD

 GPU programs are called kernels, and are written using the Single Program Multiple Data (SPMD) 
programming model 

‒ SPMD executes multiple instances of the same program independently, where each program works on a different 
portion of the data

 For data-parallel scientific and engineering applications, combining SPMD with loop strip mining is a very 
common parallel programming technique

‒ Message Passing Interface (MPI) is used to run SPMD on a distributed cluster

‒ POSIX threads (pthreads) are used to run SPMD on a shared-memory system

‒ Kernels run SPMD within a GPU
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PARALLEL SOFTWARE – SPMD

 Consider the following vector addition example

 Combining SPMD with loop strip mining allows multiple copies of the same program execute on different 
data in parallel

A
+
B
=
C

for( i = 0:11 ) {
C[ i ] = A[ i ] + B[ i ]

}

Serial program:
one program completes 
the entire task

for( i = 0:3 ) {
C[ i ] = A[ i ] + B[ i ]

}

for( i = 4:7 ) {
C[ i ] = A[ i ] + B[ i ]

}

for( i = 8:11 ) {
C[ i ] = A[ i ] + B[ i ]

}
SPMD program:
multiple copies of the
same program run on 
different chunks of the 
data

30

A
+
B
=
C
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PARALLEL SOFTWARE – SPMD

 In the vector addition example, each chunk of data could be executed as an independent thread

 On modern CPUs, the overhead of creating threads is so high that the chunks need to be large

‒ In practice, usually a few threads (about as many as the number of CPU cores) and each is given a large amount of 
work to do

 For GPU programming, there is low overhead for thread creation, so we can create one thread per loop 
iteration
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PARALLEL SOFTWARE – SPMD

Single-threaded (CPU)

// there are N elements
for(i = 0; i < N; i++)
C[i] = A[i] + B[i]

Multi-threaded (CPU)

// tid is the thread id
// P is the number of cores
for(i = 0; i < tid*N/P; i++)
C[i] = A[i] + B[i]

Massively Multi-threaded (GPU)

// tid is the thread id
C[tid] = A[tid] + B[tid]

= loop iteration
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PARALLEL HARDWARE – SIMD

 Each processing element of a Single Instruction Multiple Data (SIMD) processor executes the same 
instruction with different data at the same time

‒ A single instruction is issued to be executed simultaneously on many ALU units 

‒ We say that the number of ALU units is the width of the SIMD unit

 SIMD processors are efficient for data parallel algorithms

‒ They reduce the amount of control flow and instruction hardware in favor of ALU hardware

Control

PE

Data
(Memory, 
Registers,

Immediates,
Etc.)

Instr

Data

Data

Data

DataPE

PE

PE
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PARALLEL HARDWARE – SIMD

 In the vector addition example, a SIMD unit with a width of four could execute four iterations of the loop 
at once

 Relating to the apple-picking example, a worker picking apples with both hands would be analogous to a 
SIMD unit of width 2

 All current GPUs are based on SIMD hardware

‒ The GPU hardware implicitly maps each SPMD thread to a SIMD “core”

‒ The programmer does not need to consider the SIMD hardware for correctness, just for performance

‒ This model of running threads on SIMD hardware is referred to as Single Instruction Multiple Threads (SIMT)
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CHALLENGES OF PARALLELIZATION

 On CPUs, hardware-supported atomic operations are used to enable concurrency

‒ Atomic operations allow data to be read and written without intervention from another thread

 Some GPUs support system-wide atomic operations, but with a large performance trade-off

‒ Usually code that requires global synchronization is not well suited for GPUs (or should be restructured)

‒ Any problem that is decomposed using input data partitioning (i.e., requires results to be combined at the end) will 
likely need to be restructured to execute well on a GPU
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PHILOSOPHY OF GPU ARCHITECTURE
FROM GENERAL PURPOSE COMPUTING PERSPECTIVE

CPU vs GPU: Latency vs Throughput

‒ CPU/multicore: optimized for latency

‒ GPU/manycore: optimized for throughput

Heterogeneous computing with GPGPU

‒ Latency-optimized cores for logic part

‒ Throughput-optimized cores for compute part

Control

ALU

ALU

ALU

ALU

Cache Cache

Cache

RAM

Control

ALU

ALU

ALU

ALU

RAM

Cache

CPU GPU
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CPU VS. GPU

 Memory access

‒ CPU is optimized to memory access latency

‒ Take advantage of large amount of cache

‒ GPU is optimized to memory access bandwidth

‒ Take advantage of “0” overhead thread switching, large amount of computing thread and quick switching hide the memory 
access latency and keep GPU core busy

 Core

‒ CPU has heavy core which is good at complex data structure, branch, pre-fetch, fit for serial code; with SIMD and 
IPL, CPU cores are also fit for lightweight parallel computing

‒ GPU has large number of lightweight core, good at simple data layout, non-branch, fit for massive parallel 
computing
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PARALLEL COMPUTING WITH MANY-CORE GPU DEVICES

 Massive parallel thinking

‒ Not 4 threads or 16 threads with SIMD instruction extensions on CPU

‒ Image tens of thousands threads are in flight on GPU device with “zero” thread creation and scheduling overhead

‒ Enough parallelism is the key to explore the GPU horsepower

‒ It’s more important for I/O sensitive algorithm

‒ Carefully analysis the data dependency

 Scalability is the consequence to be carefully considered

‒ Scalability is an important topic on SMP architecture, it’s more important on many-core GPU devices

‒ Consider the overhead of inter-thread communication and atomic operation on GPU devices

 Design architecture-oriented algorithm instead of “text-book” algorithm

‒ Like, consider the cycles of computing instruction and cycles of memory access, replace memory access with 
computing for performance speedup
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THE NATURE OF CPU+GPU COMPUTING

CPU: scalar processing

+ Latency

+ Optimized for sequential and branching 
algorithms

+ Single core performance

- Throughput

Other Highly Parallel 
Workloads

Graphics Workloads

Serial/Task-Parallel 
Workloads

GPU: parallel processing

+ Throughput computing

+ High aggregate memory bandwidth

+ Very high overall metal performance/watt

- Latency

CPU+GPU provides optimal performance combinations for a wide range of platform configurations
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PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM

Step 1: analysis on algorithm and application

Step 2: automatic parallelization or explicit parallelization

Step 3:  task/data parallel?

Step 4: parallelism granularity

Step 5: dependency 

Step 6: communication

Step 7: load balance

A CASE STUDY – WITH 4 CORE CPU

do j = 1,n 
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 
end do 

do j = 1,n/4
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 
end do 

do j = 3n/4+1, n
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 
end do 

......Loop unrolling,
partition data set 
to 4 cores with 
total 4 threads
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PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM

Step 1: analysis on algorithm and application

Step 2: automatic parallelization or explicit parallelization

Step 3:  task/data parallel?

Step 4: parallelism granularity

Step 5: dependency 

Step 6: communication

Step 7: load balance

A CASE STUDY – OPENMP ON 4 CORE CPU

do j = 1,n 
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 
end do 

Loop unrolling,
openMP

#pragma omp parallel for
do j = 1,n
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 
end do 
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PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM

Step 1: analysis on algorithm and application

Step 2: automatic parallelization or explicit parallelization

Step 3:  task/data parallel?

Step 4: parallelism granularity

Step 5: dependency 

Step 6: communication

Step 7: load balance

A CASE STUDY – MOVE TO MASSIVE PARALLELISM

do j = 1,n 
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 
end do 

Loop unrolling with 
very fine-granularity

do j = 1, n
do i = 1, n

uint gidx =  get_global_id( 0 );
a[gidx] = fcn[gidx];

end do
end do
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PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM

Step 1: analysis on algorithm and application

Step 2: automatic parallelization or explicit parallelization

Step 3:  task/data parallel?

Step 4: parallelism granularity

Step 5: dependency 

Step 6: communication

Step 7: load balance

A CASE STUDY – WITH GPU

do j = 1,n 
do i = 1,n 

a(i,j) = fcn(i,j) 
end do 
end do 

Loop unrolling with 
very fine-granularity

__kernel void fcn() {
uint gidx =  get_global_id( 0 );
a[gidx] = fcn[gidx];

}
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A TYPICAL OPENCL CODE
HOST PART

Start

Initialize devices

Copy data to GPU

Execute GPU Kernel

Copy data back to CPU

Other instructions

int main(int argc, char ** argv)
{   

......

clGetPlatformIDs(numPlatforms, platforms, NULL);
clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,

devices, NULL);
clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
datasize, A, &status);

clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)src_image,
0, NULL,  NULL)

clCreateProgramWithSource(context, 1, (const char**)&source,  NULL, &status);
clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
clCreateKernel(program, "vecadd", &status);
clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, 

NULL, 0, NULL, NULL);

clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C, 
0, NULL, NULL);

……

}
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A TYPICAL OEPNCL CODES

int main(int argc, char ** argv)
{   

......

clGetPlatformIDs(numPlatforms, platforms, NULL);
clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,

devices, NULL);
clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
datasize, A, &status);

clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)src_image,

0, NULL,  NULL)

clCreateProgramWithSource(context, 1, (const char**)&source,  NULL, &status);
clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
clCreateKernel(program, "vecadd", &status);
clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, 

NULL, 0, NULL, NULL);

clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C, 
0, NULL, NULL);

……

}

__kernel void vecadd(__global int *A,
__global int *B,
__global int *C) {

int idx = get_global_id(0);

C[idx] = A[idx] + B[idx];

}
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AGENDA

 What’s OpenCL

 Fundamentals for OpenCL programming 

 OpenCL programming basics

‒ OpenCL architecture and platform

‒ OpenCL key components and APIs

 OpenCL programming tools

 Demos 
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OPENCL ARCHITECTURE BIG PICTURE
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OPENCL ARCHITECTURE OVERVIEW

 OpenCL architecture abstracts the operation into four parts 

 Platform model

‒ Defines the OpenCL devices

 Execution model

‒ Defines OpenCL devices actions and inter-actions

 Memory model

‒ Defines data location and communications among OpenCL
devices

 Programming model

‒ Defines how different OpenCL devices working together for a 
single problem
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PLATFORM MODEL

 The model consists of a host connected to one or more OpenCL devices

‒ A device is divided into one or more compute units

‒ Compute units are divided into one or more processing elements

‒ Each processing element maintains its own program counter

 The host is whatever the OpenCL library runs on  

‒ x86 CPUs for GPUs

 Devices are processors that the library can talk to 

‒ CPUs, GPUs, and generic accelerators

 For AMD 

‒ All CPUs are combined into a single device (each core is a compute unit and 
processing element)

‒ Each GPU is a separate device

 Every vendor has their implementation of platform model, OpenCL API 
provides the details of platform information
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EXECUTION MODEL

 “Host” program and “Kernel”

‒ Host program is just a traditional CPU program consists of all OpenCL components

‒ Kernel runs on the OpenCL devices to perform off-loaded computing workloads

 “Context” is defined in host to control Kernel execution

‒ “Program” is the object to be JIT compiled into “Kernel” and executed on devices

‒ “Memory” is the object as the data communication unit

‒ “Command queue” is existing among host and devices to control devices behavior

 Execution model defines how threads are organized in Kernel

‒ Each thread is a work-item 

‒ Work-items are organized as work-group

‒ Work-groups are organized as a NDRange
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MEMORY MODEL

 Memory model defines

‒ The type of memory objects

‒ The location of different memory objects

 Two kinds of memory objects

‒ Buffer and image
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PROGRAMMING MODEL

 The OpenCL execution model supports data parallel and task parallel programming models

 Data parallel programming model

‒ One-to-one mapping between work-items and elements in a memory object

‒ Work-groups can be defined explicitly or implicitly (specify the number of work-items and OpenCL creates the 
work-groups)

 Task Parallel Programming Model

‒ The OpenCL task parallel programming model defines a model in which a single instance of a kernel is executed 
independent of any index space

‒ Under this model, users express parallelism by:

‒ Enqueuing multiple tasks, and/or

‒ Enqueing native kernels developed using a programming model orthogonal to OpenCL

 Synchronization

‒ Possible between items in a work-group

‒ Possible between commands in a context command queue
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OPENCL FRAMEWORK

 From API definition point of view, OpenCL framework consists of three parts

 OpenCL Platform layer

‒ The platform layer allows the host program to discover OpenCL devices and their capabilities and to create contexts

‒ Platform, device, context

 OpenCL Runtime

‒ The runtime allows the host program to manipulate

‒ Command queue, memory objects, program, Kernel, kernel execution, event……

 OpenCL Compiler

‒ The OpenCL compiler creates program executable that contain OpenCL kernels. The OpenCL C programming 
language implemented by the compiler supports a subset of the ISO C99 language with extensions for parallelism.  
contexts once they have been created



|   INTRODUCTION TO OPENCL |   OCTOBER 23, 2013 |   PUBLIC54

OPENCL PROGRAMMING DIAGRAM 

Select a platform

Create context

Select devices

Command queue

Memory objects

Create and build 
program 

Create and execute 
Kernel

Release objects
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OPENCL PLATFORM LAYER

 This function is usually called twice

‒ The first call is used to get the number of platforms available to the implementation

‒ Space is then allocated for the platform objects

‒ The second call is used to retrieve the platform objects

 Once a platform is selected, we can then query for the devices that it knows how to interact with 

 We can specify which types of devices we are interested in (e.g. all devices, CPUs only, GPUs only) 

 This call is performed twice as with clGetPlatformIDs

‒ The first call is to determine the number of devices, the second retrieves the device objects

SELECTING A PLATFORM AND SELECTING DEVICES
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CONTEXT

 A context refers to the environment for managing OpenCL objects and resources

 To manage OpenCL programs, the following are associated with a context

‒ Devices: the things doing the execution

‒ Program objects: the program source that implements the kernels

‒ Kernels: functions that run on OpenCL devices

‒ Memory objects: data that are operated on by the device

‒ Command queues: mechanisms for interaction with the devices

‒ Memory commands (data transfers)

‒ Kernel execution

‒ Synchronization
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CREATE CONTEXT

When you create a context, you will provide a list of devices to associate with it

‒ For the rest of the OpenCL resources, you will associate them with the context as they are created

Context

Empty context
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OPENCL RUNTIME - COMMAND QUEUES

 A command queue is the mechanism for the host to request that an action be performed by the device

‒ Perform a memory transfer, begin executing, etc. 

 A command queue establishes a relationship between a context and a device

 A separate command queue is required for each device

 Commands within the queue can be synchronous or asynchronous
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COMMAND QUEUES

 Command queues associate a context with a device

‒ Despite the figure below, they are not a physical connection

Context

Command queues
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MEMORY OBJECTS

 Memory objects are OpenCL data that can be moved on and off devices for the given context

‒ Objects are classified as either buffers or images

 Buffers

‒ Contiguous chunks of memory – stored sequentially and can be accessed directly (arrays, pointers, structs)

‒ Read/write capable

 Images

‒ Opaque objects (2D or 3D)

‒ Can only be accessed via read_image() and write_image()

‒ Can either be read or written in a kernel, but not both 
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MEMORY OBJECTS

 Memory objects are associated with a context

‒ They must be explicitly transferred to devices prior to execution

Context

Uninitialized OpenCL memory objects—the original 
data will be transferred later to/from these objects

Original input/output
data

(not OpenCL
memory objects)
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TRANSFERRING DATA

 OpenCL provides commands to transfer data to and from devices 

‒ clEnqueue{Read|Write}{Buffer|Image}

‒ Copying from the host to a device is considered writing

‒ Copying from a device to the host is reading

 The write command both initializes the memory object with data and places it on a device

‒ The validity of memory objects that are present on multiple devices is undefined by the OpenCL spec (i.e. are 
vendor specific)

 OpenCL calls also exist to directly map part of a memory object to a host pointer
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TRANSFERRING DATA

 Memory objects are transferred to devices by specifying an action (read or write) and a command queue

‒ The validity of memory objects that are present on multiple devices is undefined by the OpenCL spec (i.e. is vendor 
specific)

Context

Images are written to a device

The images are
redundant here to
show that they are
both part of the 
context (on the 
host) and 
physically on the
device
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PROGRAMS

 A program object is basically a collection of OpenCL kernels

‒ Can be source code (text) or precompiled binary

‒ Can also contain constant data and auxiliary functions

 Creating a program object requires either reading in a string (source code) or a precompiled binary

 To compile the program

‒ Specify which devices are targeted

‒ Program is compiled for each device 

‒ Pass in compiler flags (optional)

‒ Check for compilation errors (optional, output to screen)
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PROGRAMS

 A program object is created and compiled by providing source code or a binary file and selecting which 
devices to target

Context

Program
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CREATING PROGRAMS AND COMPILING PROGRAMS

 The program object is created from strings of source code, JIT capability

 The program object also can be created from a compiled executable binary

 If a program fails to compile, OpenCL requires the programmer to explicitly ask for compiler output

‒ A compilation failure is determined by an error value returned from clBuildProgram()

‒ Calling clGetProgramBuildInfo() with the program object and the parameter CL_PROGRAM_BUILD_STATUS returns a 
string with the compiler output
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KERNELS

 A kernel is a function declared in a program that is executed on an OpenCL device

‒ A kernel object is a kernel function along with its associated arguments

‒ Kernel objects are created from a program object by specifying the name of the kernel function

 Must explicitly associate arguments (memory objects, primitives, etc) with the kernel object

Context

Kernels
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KERNELS

 There is a high overhead for compiling programs and creating kernels 

‒ Each operation only has to be performed once (at the beginning of the program)

‒ The kernel objects can be reused any number of times by setting different arguments

clCreateProgramWithSource

clCreateProgramWithBinary 

clBuildProgram clCreateKernel 

Read source 
code into an 

array
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SETTING KERNEL ARGUMENTS

 Kernel arguments are set by repeated calls to clSetKernelArgs

 Memory objects and individual data values can be set as kernel arguments

Context

Data (e.g. images) are 
set as kernel 
arguments
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EXECUTING THE KERNEL

 Need to set the dimensions of the index space, and (optionally) of the work-group sizes

 Kernels execute asynchronously from the host 

‒ clEnqueueNDRangeKernel just adds is to the queue, but doesn’t guarantee that it will start executing

 A thread structure defined by the index-space that is created

‒ Each thread executes the same kernel on different data

Context

An index space of 
threads is created
(dimensions match
the data)
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EXECUTING THE KERNEL

 Tells the device associated with a command queue to begin executing the specified kernel

 The global (index space) must be specified and the local (work-group) sizes are optionally specified

 A list of events can be used to specify prerequisite operations that must be complete before executing
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THREAD STRUCTURE

 Massively parallel programs are usually written so that each thread computes one part of a problem

‒ For vector addition, we will add corresponding elements from two arrays, so each thread will perform one addition

‒ If we think about the thread structure visually, the threads will usually be arranged in the same shape as the data

 Consider a simple vector addition of 16 elements

‒ 2 input buffers (A, B) and 1 output buffer (C) are required

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Vector Addition:

Array Indices
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THREAD STRUCTURE

 Create thread structure to match the problem 

‒ 1-dimensional problem in this case

Thread structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Vector Addition:

14 1512 1310 118 96 74 52 30 1

Thread IDs
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THREAD STRUCTURE

 Each thread is responsible for adding the indices corresponding to its ID

Thread structure:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

B

C

=

+

Vector Addition:

14 1512 1310 118 96 74 52 30 1
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THREAD STRUCTURE

 OpenCL’s thread structure is designed to be scalable

 Each instance of a kernel is called a work-item (though “thread” is commonly used as well)

 Work-items are organized as work-groups

‒ Work-groups are independent from one-another (this is where scalability comes from)

 An index space defines a hierarchy of work-groups and work-items

 Work-items can uniquely identify themselves based on:

‒ A global id (unique within the index space)

‒ A work-group ID and a local ID within the work-group
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THREAD STRUCTURE

 API calls allow threads to identify themselves and their data

 Threads can determine their global ID in each dimension

‒ get_global_id(dim) 

‒ get_global_size(dim)

 Or they can determine their work-group ID and ID within the workgroup

‒ get_group_id(dim)

‒ get_num_groups(dim)

‒ get_local_id(dim)

‒ get_local_size(dim)
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MEMORY MODEL

 The OpenCL memory model defines the various types of memories (closely related to GPU memory 
hierarchy)

 Memory management is explicit 

‒ Must move data from host memory to device global memory, from global memory to local memory, and back

 Work-groups are assigned to execute on compute-units

‒ No guaranteed communication/coherency between different work-groups (no software mechanism in the OpenCL
specification)

Memory Description

Global Accessible by all work-items

Constant Read-only, global

Local Local to a work-group

Private Private to a work-item
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WRITING A KERNEL

 One instance of the kernel is created for each thread

 Kernels:

‒ Must begin with keyword __kernel

‒ Must have return type void

‒ Must declare the address space of each argument that is a memory object (next slide)

‒ Use API calls (such as get_global_id()) to determine which data a thread will work on

 Address Space Identifiers:

‒ __global, memory allocated from global address space

‒ __constant, a special type of read-only memory

‒ __local, memory shared by a work-group

‒ __private, private per work-item memory

‒ __read_only/__write_only, used for images

 Kernel arguments that are memory objects must be global, local, or constant
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A TYPICAL OEPNCL CODES

int main(int argc, char ** argv)
{   

......

clGetPlatformIDs(numPlatforms, platforms, NULL);
clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,

devices, NULL);
clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
datasize, A, &status);

clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)src_image,

0, NULL,  NULL)

clCreateProgramWithSource(context, 1, (const char**)&source,  NULL, &status);
clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
clCreateKernel(program, "vecadd", &status);
clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, 

NULL, 0, NULL, NULL);

clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C, 
0, NULL, NULL);

……

}

__kernel void vecadd(__global int *A,
__global int *B,
__global int *C) {

int idx = get_global_id(0);

C[idx] = A[idx] + B[idx];

}
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COPYING DATA BACK

 The last step is to copy the data back from the device to the host

 Similar call as writing a buffer to a device, but data will be transferred back to the host

Context

Copied back
from GPU
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RELEASING RESOURCES

 Most OpenCL resources/objects are pointers that should be freed after they are done being used

 There is a clRelase{Resource} command for most OpenCL types

‒ Ex: clReleaseProgram(), clReleaseMemObject()
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COMPILING AND RUNNING OPENCL APPLICATION

 Host program is compiled by traditional compiler

‒ gcc, MSVC++

 Kernel is compiled by OpenCL compiler

‒ Both CPU and GPU computing device shares the 
same front-end (LLVM extension for OpenCL)

‒ LLVM AS generates x86 binary

‒ LLVM IR-to-AMD IL generates AMD GPU binary

‒ Can be JIT for cross-platform

 Running OpenCL application

‒ For CPU as computing device, OpenCL runtime 
automatically determines the number of processing 
elements

‒ For GPU as computing device, Kernel runs as the 
exact instructions
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AGENDA

 What’s OpenCL

 Fundamentals for OpenCL programming 

 OpenCL programming basics

 OpenCL programming tools

 Demos 
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COMPLETE TOOL-CHAIN FOR OEPCNL PROGRAMMING

 AMD APP SDK

‒ SDK for OpenCL programming

‒ Includes header files, libraries, compiler and sample codes

 AMD CodeXL

‒ All-in-one debugger and profiler for OpenCL programming

‒ With AMD Kernel Analyzer

‒ Static OpenCL Kernel performance analyzer

‒ Expose IL and ISA of various GPU platform

 Library 

‒ Bolt, a C++ template library

‒ AMD clAmdBlas, AMD clAmdFFT, Aparapi

‒ clMAGMA, OpenCV, etc…….
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KERNEL DEBUGGING AND PROFILING

 AMD CodeXL is the all-in-one tool for

‒ Powerful GPU debugging

‒ Comprehensive GPU and CPU profiling

‒ Static OpenCL™ kernel analysis capabilities

 AMD CodeXL is available both as a Visual Studio® extension and a standalone user interface application for 
Windows® and Linux®.

USING CODEXL
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CPU PROFILING KEY FEATURES AND BENEFITS

 Diagnose performance issues in hot-spots

‒ AMD CodeXL uses hardware-level 
performance counters and instruction-based 
sampling to provide valuable clues about 
inefficient program behavior. 

‒ Use rates and ratios to quickly measure the 
efficiency of functions, loops and program 
statements.
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CPU PROFILING KEY FEATURES AND BENEFITS

 Analyze Call Chain relationships

‒ Diagnose issues from a caller / callee
relationship perspective. 

‒ Quickly determine which call trees are using 
the most resources (time or events) to isolate 
potential optimization opportunities.
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CPU PROFILING KEY FEATURES AND BENEFITS

 Supports multi-core Windows and Linux 
platforms

‒ AMD CodeXL supports all of the latest AMD 
processors on both Windows and Linux 
platforms.
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CPU PROFILING KEY FEATURES AND BENEFITS

 Extends Microsoft Visual Studio

‒ Microsoft Visual Studio user can analyze their 
programs without leaving the Visual Studio 
environment. 

‒ The AMD CodeXL Visual Studio plug-in provides 
all of the profiling features supported by the 
stand-alone AMD CodeXL for Windows GUI-
based tool.
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GPU DEBUGGING KEY FEATURES AND BENEFITS

 Real-time OpenCL and OpenGL API-
level debugging

‒ Allows locating API function calls and 
the code paths that led to them
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GPU DEBUGGING KEY FEATURES AND BENEFITS

 Online OpenCL kernel debugging

‒ Works with present hardware. 
Requires no special configuration or 
changes to the code. Develop and 
debug on a single computer with just 
one GPU. Step through the workflow 
of a single work item or compare 
values across all work items.
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GPU DEBUGGING KEY FEATURES AND BENEFITS

 Full integration with Visual Studio

‒ Now API-level debugging is 
performed inside the Visual Studio 
source editor. If OpenCL kernel source 
code .cl files are included in the 
project, they will be identified and 
used for kernel debugging. In addition, 
Visual Studio views such as the call 
stack view and locals view will be 
filled with kernel debugging 
information.
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GPU DEBUGGING KEY FEATURES AND BENEFITS

 API statistics view

‒ Gives an overview of OpenCL and 
OpenGL API usage, and more detailed 
views, including unrecommended
function calls (with alternative 
suggestions) and deprecated behavior.
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GPU DEBUGGING KEY FEATURES AND BENEFITS

 Object visualization

‒ View and export OpenCL buffers and 
Images and OpenGL Textures and 
buffers as pictures or as spreadsheet 
data.
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GPU PROFILING KEY FEATURES AND BENEFITS

 Collect OpenCL™ Application Trace

‒ View and debug the input parameters 
and output results for all OpenCL™ 
API calls

‒ Search the API calls

‒ Navigate to the source code that 
called an OpenCL™ API

‒ Specify which OpenCL™ APIs will be 
traced
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GPU PROFILING KEY FEATURES AND BENEFITS

 Collect GPU Performance Counters 
of AMD Radeon™ graphics cards

‒ Show kernel resource usage

‒ Show the number of instructions 
executed by the GPU

‒ Show the GPU utilization

‒ Show the GPU memory access 
characteristics

‒ Measure kernel execution time
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GPU PROFILING KEY FEATURES AND BENEFITS

 OpenCL™ Timeline visualization

‒ Visualize the application high level 
structure

‒ Visualize kernel execution and data 
transfer operations

‒ Visualize host code execution
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GPU PROFILING KEY FEATURES AND BENEFITS

 OpenCL™ Application Summary 
pages

‒ Find incorrect or inefficient usage of 
the OpenCL™ API using the OpenCL™ 
analysis module

‒ Find the API hotspots

‒ Find the bottlenecks between kernel 
execution and data transfer 
operations

‒ Find the top 10 data transfer and 
kernel execution operations
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GPU PROFILING KEY FEATURES AND BENEFITS

 OpenCL™ Kernel Occupancy Viewer

‒ Calculates and displays a kernel 
occupancy number, which estimates 
the number of in-flight wavefronts on 
a compute unit as a percentage of the 
theoretical maximum number of 
wavefronts that the compute unit can 
support

‒ Find out which kernel resource (GPR 
usage, LDS size, or Work-group size) is 
currently limiting the number of in-
flight wavefronts

‒ Displays graphs showing how kernel 
occupancy would be affected by 
changes in each kernel resource
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STATIC KERNEL ANALYSIS – KEY FEATURES AND BENEFITS

 Compile, analyze and disassemble the 
OpenCL kernel and supports multiple 
GPU device targets.

 View any kernel compilation errors and 
warnings generated by the OpenCL
runtime.

 View the AMD Intermediate Language 
(IL) code generated by the OpenCL run-
time.

 View the ISA code generated by the 
AMD Shader Compiler.

 View various statistics generated by 
analyzing the ISA code.

 View General Purpose Registers and 
spill registers allocated for the kernel.
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Language Binding Tools: allows you to write the OpenCL host code in your own programming language. The OpenCL kernels you use 
are still written in the OpenCL language.

C •Calseum (for ATI CAL) 
•HMPP Workbench from CAPS entreprise
•Libra SDK from GPU Systems 

Fortran •HMPP Workbench from CAPS entreprise

Java •JavaCL 

Matlab •IPT_ATI_PROJECT 
•Libra SDK from GPU Systems 

.NET •OpenCL .Net
•OpenTK 

Python •CLyther 
•PyGWA (for ATI CAL) 
•PyOpenCL 
•Pythoncl

Kernel Translation Tools: additionally allow you to write the kernel itself in your own programming language. The tools then translate 
your kernel to the OpenCL language.

Java •Aparapi

Scala •ScalaCL 

LANGUAGE BINDING
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DATACENTER WORKLOAD

 Generally used for short-term storage and caching, handling requests that would otherwise require 
database or file system accesses

 Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others

 Effectively a large distributed hash table 

‒ Responds to store and get requests received over the network

‒ Conceptually:

‒ store(key, object) 

‒ object = get(key)

A Distributed Memory Object Caching System Used in Cloud Servers 
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Data Transfer Execution

OFFLOADING MEMCACHED KEY LOOKUP TO THE GPU

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,” Proceedings of the 2012 IEEE 
International Symposium on Performance Analysis of Systems and Software (ISPASS 2012), April 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209
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SUMMARY

 OpenCL is an open standard for programming on heterogeneous computing platforms

 OpenCL programming requires

‒ Parallel computing thinking

‒ GPU architecture knowledge for performance consideration

‒ Deep understanding of OpenCL architecture to control devices

 OpenCL key concepts

‒ Platform, device, context

‒ Command queue, buffer/image, data copying, program, Kernel, Kernel execution

 OpenCL programming tools

‒ Code XL

 Next day

‒ GPU architecture 

‒ Kernel optimization

‒ OpenCL application optimization



THANKS!
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