INTRODUCTION TO OPENCL
HAIBO XIE, PH.D.



mailto:haibo.xie@amd.com

AGENDA AMDZ1

4 \What's OpenCL

4 Fundamentals for OpenCL programming
A OpenCL programming basics

A OpenCL programming tools

A Examples & demos

2 | INTRODUCTIONTO OPENCL | OCTOBER23,2013 | PUBLIC



WHAT IS OPENCL AMDZ1

o — Open Computing Language (OpenCL) is a framework
“ - * For writing parallel computing programs that execute
.Q across heterogeneous platforms
e

OpenCL is a programming model
* To fulfill parallel computing thought in the Heterogeneous

OpenCL Computing era

OpenCL includes

* Language for writing Kernels

* APIs to use and control the platform
 Compilers for cross-platform binary generation

OpenCL is an open standard

3 | INTRODUCTIONTO OPENCL | OCTOBER23,2013 | PUBLIC



ARCHIT

Enabled by:
v" Moore’s

v’ Voltage Scaling

w
O
c
®
€
—_
¢
G
—_
o
a
ge)
©
[
—_
<
w
Q
Q0
k=
n

ECTURE EVOLUTION

Single-Core Era

Constrained by:
Law Power
Complexity

INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Multi-Core Era

Enabled by:
v" Moore’s Law
v' SMP architecture

Power
Parallel SW
Scalability

Throughput
Performance

Constrained by:

Time (# of processors)

Enabled by:

v' Abundant data
parallelism

v' Power efficient

GPUs

Modern Application
Performance

\

J

Heterogeneous
Systems Era

Temporarily

Constrained by:
Programming
models
Comm.overhead

¥—_ Wweare

here

>

Time (Data-parallel exploitation)




Single-Core Era

Enabled by: Constrained by:

v Moore’s Law Power

v’ Voltage Scaling Complexity

Assembly » C/C++ ® Java ...

Single-thread Performance

INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

PROGRAMMING MODEL EVOLUTION

Multi-Core Era

Enabled by: Constrained by:

v' Moore’s Law Power

v" SMP architecture Parallel SW
Scalability

pthreads ® OpenMP / TBB ...

‘,

Throughput
Performance

Time (# of processors)

Heterogeneous
Systems Era

Temporarily
Constrained by:
parallelism Programming

v Power efficient models
GPUs Comm.overhead

Enabled by:
v" Abundant data

Shader » CUDA® OpenCL® C++
AMP ®» Java

A

\

J ¥—_ Wweare

Modern Application
Performance

here

>

Time (Data-parallel exploitation)




WHAT’S HETEROGENEOUS COMPUTING

WIKIPEDIA

The Free Encyclopedia

6 | INTRODUCTIONTO OPENCL| OCTOBER23,2013 | PUBLIC

Heterogeneous computing systems refer to electronic systems

AMD 1

that use a variety of different types of computational units with
different instruction set architectures (ISAs).

Compute units are:
General-purpose processor

Multi-core CPUs

Special-purpose processor

Graphics Processing Unit (GPU)

Digital Signal Processor (DSP)

Field-Programmable Gate Array (FPGA)

Custom acceleration logic (application-specific integrated
circuit (ASIC))



TYPICAL HETEROGENEOUS SYSTEM - CPU + dGPU AMDZ1

CPU + dGPU

Common form factor of recent GPGPU
2-16 x86 cores

1-4 GPU cards

Tens of TFLOPS

Distributed memory system between CPU and GPU

PCI-E communication as a bottleneck

Very fine granularity parallelism needed

Expert programmer but better learning curve than Cell B.E

Kinds of programming model supported, CG/CUDA/OpenCL/C++
AMP

7 | INTRODUCTIONTO OPENCL | OCTOBER23,2013 | PUBLIC



TYPICAL HETEROGENEOUS SYSTEM — AMD HSA APU AMDZ1

AMD APU, codename Kevari

Third generation APU chip

Up to 4 x86 general purpose core

1] Combine GPU into the single die

dplid ,. Graphics SIMD More than 1TFLOPS single precision float operation

Array

gl " Display

Unified memory system between CPU and GPU
Industry standard programming model — OpenCL

Kinds of high level programming languages support, C/C++/Java,
etc

Way to future Full HSA enablement.

Multimedia

8 | INTRODUCTIONTO OPENCL | OCTOBER23,2013 | PUBLIC



EVOLUTION OF HETEROGENEOUS COMPUTING

Excellent

Proprietary Drivers Era

Graphics & Proprietary
Driver-based APIs

“Adventurous” programmers

Exploit early programmable

“shader cores” in the GPU

Make your program look like
“graphics” to the GPU

Poor

CUDA™, Brook+, etc

2002 - 2008

9 | INTRODUCTIONTO OPENCL| OCTOBER23,2013 | PUBLIC

Standards Drivers Era

OpenCL™, DirectCompute
Driver-based APIs

Expert programmers
C and C++ subsets
Compute centric APIs, data types

Multiple address spaces with
explicit data movement
Specialized work queue based
structures

Kernel mode dispatch

2009 - 2011

AMD 1

Architected Era

Heterogeneous System Architecture
GPU Peer Processor

Mainstream programmers
Full C++
GPU as a co-processor

Unified coherent address space
Task parallel runtimes

Nested Data Parallel programs
User mode dispatch
Pre-emption and context
switching

2012 - 2020



GPU coMPUTE CAPABILITY IS MORE THAN J () X THAT OF THE cPU AMDZY

ObpenCl is about to release GPlJ) device combutine horsepower

H CPU GFLOPS B GPU GFLOPS

10 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



AN OPENCL STANDARD AMDZ1

CPUs GPUs
Open Standard Multiple cores driving Emerging Increasingly general
performance Intersection purpose data-parallel
Cross Platform increases computing
Multi-Vend SEES
ulti-Venaor s Y
OpenCL
Royalty Free Multi-processor Heterogeneous Graphics
programming — Computing APIs and
Broad ISV Support e.g. OpenMP Shading

Languages

OpenCL™ is a programming framework for heterogeneous compute resources

11 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



AN OPENCL STANDARD AMDZ1

» @Acnodea AcTivision BIZARD '\‘ @ /\K"h Aolley votm A ArcSoit Autodesk
x9N biodroide gﬂ.& “modep\\y CREATIVE CW.Z'_ D&AL digia E oMY  Eerents

@ ¥ FIXSTaRS FU]ITSU (=) nmeeves Google SUPLICREMEDY  Sess ey @:‘59!},’,‘,‘, ll...... D rasmscon rl]J

AMDI1 ARM (\ ERICSSON 2 -~ freescale-
apple =5 (intel) KHRCONOS Q@ nokIA &,
Over 100 companies creating
!! visual computing standards 0 S‘ll n NVIDIA.
@ GE] imagination - Board of Promoters ~ (QUALCOMM INSTRUMENTS

HUONE TERT weswornszor inoras )\ KETI ‘LG ;}Nm moatrox A= GNSR mMicron
| mozilla LUEREC SIPCNT-T- LR MoviaL S (M grosNEC g% *0N2 (Jorera

Panasonic wpacketvieo T Petapary ER8S Renesas BRMI sasken [REAMEICEN

T oo

- |
SIEMENS M8 ana o\ e  SumMcaops == SoftBank 6 [ 2. SYMbI3N TAkumi  TeRecmy

SIRkR!?

-~ YES __ Hm3sicon TOSHIBA ~ O S ‘ M_ vImwaor g "‘vm

S ZEBRA
i A VAMAMA IMAGING

12 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



OPENCL GAINING MOMENTUM

N.America

|AHs for Current Multi-Threaded Development

The most popular multi-threaded development APT used by developers in t
survey is OpenMP (Open Multi-Processing), which supports multi-platform shar
memory multiprocessing programming in C, C4++, and FORTRAM. OpenMP
currently used by 31% of respondents. OpenCL (Open Computing Language),
framework for writing programs that execute across various processor platform
follows at 28%. Another 259% use Intel Threading Building Blocks, a C++ templa
library that leverages Intel's multi-core processors.

Which of the following do you program with | ot | PErcentof | Percent of
today? Responzes Cases
CpenMP 91 13.9 )
OpenCL 81 124 @’
Int=] Threading Building Blocks T2 11.0

Intel Parallgl Building Blocks 65 10.0 222
CUDA 59 =] 20.1
Intel Cilk Pius 56 5.6 19.1
MP 50 7.7 17.1
Co Array Foriran 4 5.2 1.6
(Other 145 22 495
Total Responses 653 100 2229
North Amarican Developmant Survey: Vol | 3041 Evans Data Comp.

Note thar this multiple rezpemse question allowsd the developers to selact as many responzers as
they wished, and thus the total number of cazes will not come to 100, The response column shows the
parcent of total resporses, while the case columm shows the parcent of actual developers frazes) who
F .

Market data provided by Evans Data Corporation | June 2011

13 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

APAC

AMD 1

APls for Current Multi-Threaded Development

Developers regularly rely on libraries and APIs to make it easier to accomplish
difficult tasks. This maxim is especially trus of threading applications, since keeping
track of every thread in ones application would be difficult and provide cpportumniby
for errors. With poor threading, applications may crash.

e mast I:thular APIs for multi-threaded ﬂ'E'.I“E|I:I|:Ir'I‘1EI'It currently are Inbel's
Threading Bullding Blocks, OpenMP, and OpenCL.

Intel TBE is a C++ template library that adds paralel programming for C++
programmers. The open source library includes algorithms, highly concurrent
containers, locks and atomic operations, a task scheduler and a scalable memory
alkscator.

Which of the following do you Count Pencentof | Penzant
program with boday? Responses | of Casas
Iniel Thieading Suliding Blocks 143 15.4 .
OpsnkP 114 14.7

OpanCL a5 12.2

Iniel Parallel Bulliing Blocks 79 10.2

Lk 71 a1

Iniel Clik Plus 63 8.1

CUDA i) 7.5

Co Amay Foaran 42 5.4

Cithier 111 14.3

Taotal Responsas 776 100 237.3
APAC Deveiopmesnt Survsy: Wi, [, & 2011 Evans Data Com.

Nare thar they mwifgpile response quesiion alimeed the dewelopers o selecd as may responses av they
wished, ama dhw dhe foval mamber of cones will mor come fo J0F The response coltmm shows e peroems
of sodal respaonses, while the case colurmn showes the percers of acnen! developers (rases) who responded




LINES-OF-CODE AND PERFORMANCE AMDZ1

WITH DIFFERENT PROGRAMMING MODEL

(Exemplary ISV “Hessian” Kernel)
350 35.00

300 30.00

250 25.00
©
200 2000 3,
S S
E 3
150 1500 >
(@]
9]

100 10.00

5.00
0 0

Serial CPU TBB Intrinsics+TBB ~ OpenCL™-C OpenCL™-C++ C++AMP HSA Bolt

B Copy-back [ Algorithm [l Launch ~ Copy B Compile [ Init

AMD A10-5800K APU with Radeon™ HD Graphics — CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.
Software — Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

14 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

. Performance



AGENDA AMDZ1

4 What’s OpenCL

A4 Fundamentals for OpenCL programming
A OpenCL programming basics

A OpenCL programming tools

A4 Demos

15 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



FUNDAMENTALS FOR OPENCL PROGRAMMING AMDZ1

A Parallel computing thinking

— Parallel computing thinking is a must-have for OpenCL programming on GPU devices which work as a many-core
computing device

4 Knowledge of GPU architecture
— GPU has a quite different architectural philosophy against CPU

A |deas of controlling and cooperating heterogeneous devices
— Heterogeneous Computing is not like parallel computing on a SMP device
— Developers should carefully control the different part of this system
— And coordinate them smoothly
— Will covered by OpenCL programming basics section

16 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLELISM AMDZ1

A

Parallelism describes the potential to complete multiple parts of a problem at the same time

A

In order to exploit parallelism, we have to have the physical resources (i.e. hardware) to work on more
than one thing at a time

4 There are different types of parallelism that are important for GPU computing:
— Task parallelism — the ability to execute different tasks within a problem at the same time
— Data parallelism — the ability to execute parts of the same task (i.e. different data) at the same time

17 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLELISM AMDZ1

4 As an analogy, think about a farmer who hires workers to pick apples from an orchard of trees

— The workers that do the apple picking are the (hardware) processing elements
— The trees are the tasks to be executed

— The apples are the data to be operated on

18 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLELISM AMDZ1

A The serial approach would be to have one worker pick all of the apples from each tree
— After one tree is completely picked, the worker moves on to the next tree and completes it as well

19 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLELISM AMDZ1

A If the workers uses both of his arms to pick apples, he can grab two at once
— This represents data parallel hardware, and would allow each task to be completed quicker
— A worker with more than two arms could pick even more apples

20 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLELISM AMDZ1

4 If more workers were hired, each worker could pick apples from a different tree

— This represents task parallelism, and although each task takes the same time as in the serial version, many are
accomplished in parallel

21 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



DECOMPOSITION AMDZ1

A

For non-trivial problems, it helps to have more formal concepts for determining parallelism

A

When we think about how to parallelize a program we use the concepts of decomposition:
— Task decomposition: dividing the algorithm into individual tasks (don’t focus on data)
— In the previous example the goal is to pick apples from trees, so clearing a tree would be a task
— Data decomposition: dividing a data set into discrete chunks that can be operated on in parallel
— In the previous example we can pick a different apple from the tree until it is cleared, so apples are the unit of data

22 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



TASK DECOMPOSITION AMDZ1

A Task decomposition reduces an algorithm to functionally independent parts

4 Tasks may have dependencies on other tasks

— If the input of task B is dependent on the output of task A, then task B is dependent on task A

— Tasks that don’t have dependencies (or whose dependencies are completed) can be executed at any time to achieve
parallelism

— Task dependency graphs are used to describe the relationship between tasks

A and B are independent
of each other

B is dependent on A

Cis dependent on Aand B

23 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



TASK DEPENDENCY GRAPHS AMDZ1

4 \We can create a simple task dependency graph for baking cookies

— Any tasks that are not connected via the graph can be executed in parallel (such as preheating the oven and
shopping for groceries)

24 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



OUTPUT/INPUT DATA DECOMPOSITION AMDZ1

4 For most scientific and engineering applications, data is decomposed based on the output data
— Each output pixel of an image convolution is obtained by applying a filter to a region of input pixels
— Each output element of a matrix multiplication is obtained by multiplying a row by a column of the input matrices

4 This technique is valid any time the algorithm is based on one-to-one or many-to-one functions

4 Input data decomposition is similar, except that it makes sense when the algorithm is a one-to-many
function
— A histogram is created by placing each input datum into one of a fixed number of bins
— A search function may take a string as input and look for the occurrence of various substrings

A For these types of applications, each thread creates a “partial count” of the output, and synchronization,
atomic operations, or another task are required to compute the final result

25 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLEL COMPUTING AMDZ1

A

The choice of how to decompose a problem is based solely on the algorithm

A

However, when actually implementing a parallel algorithm, both hardware and software considerations
must be taken into account

A

There are both hardware and software approaches to parallelism

A

Much of the 1990s was spent on getting CPUs to automatically take advantage of Instruction Level
Parallelism (ILP)

— Multiple instructions (without dependencies) are issued and executed in parallel
— Automatic hardware parallelization will not be considered for the remainder of the lecture

A Higher-level parallelism (e.g. threading) cannot be done automatically, so software constructs are required
for programmers to tell the hardware where parallelism exists

— When parallel programming, the programmer must choose a programming model and parallel hardware that are
suited for the problem

26 | INTRODUCTIONTO OPENCL | OCTOBER23,2013 | PUBLIC



PARALLEL HARDWARE AMDZ1

4 Hardware is generally better suited for some types of parallelism more than others

Multi-core superscalar processors Phenom Il CPU Task
Vector or SIMD processors SSE units (x86 CPUs) Data
Multi-core SIMD processors Radeon 7970 GPU Data

A Currently, GPUs are comprised of many independent “processors” that have SIMD processing elements
— One task is run at a time on the GPU

— Loop strip mining (next slide) is used to split a data parallel task between independent processors

— Every instruction must be data parallel to take full advantage of the GPU’s SIMD hardware
— SIMD hardware is discussed later in the lecture

27 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



LOOP STRIP MINING AMDZ1

A Loop strip mining is a loop-transformation technique that partitions the iterations of a loop so that
multiple iterations can be:

— executed at the same time (vector/SIMD units),

— split between different processing units (multi-core CPUs),
— or both (GPUs)

A4 An example with loop strip mining is shown in the following slides

28 | INTRODUCTIONTO OPENCL | OCTOBER23,2013 | PUBLIC



PARALLEL SOFTWARE — SPMD AMDZ1

4 GPU programs are called kernels, and are written using the Single Program Multiple Data (SPMD)
programming model

— SPMD executes multiple instances of the same program independently, where each program works on a different
portion of the data

4 For data-parallel scientific and engineering applications, combining SPMD with loop strip mining is a very
common parallel programming technique

— Message Passing Interface (MPI) is used to run SPMD on a distributed cluster
— POSIX threads (pthreads) are used to run SPMD on a shared-memory system
— Kernels run SPMD within a GPU

29 | INTRODUCTIONTO OPENCL| OCTOBER23,2013 | PUBLIC



PARALLEL SOFTWARE — SPMD AMDZ1

4 Consider the following vector addition example

for(i=0:11){
Cl[i]=A[i]+B[i]

Serial program:

A
+
C

the entire task

A Combining SPMD with loop strip mining allows multiple copies of the same program execute on different
data in parallel

for(i=0:3){ for(i=4:7){ for(i=8:11){
Cl[i]=A[i]+B[i] Cl[i]=A[i]+B[i] Cli]=A[i]+B[i]

SPMD program:
multiple copies of the
same program run on
different chunks of the
data

Ol @+ >

30 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLEL SOFTWARE — SPMD AMDZ1

A

In the vector addition example, each chunk of data could be executed as an independent thread

A

On modern CPUs, the overhead of creating threads is so high that the chunks need to be large

— In practice, usually a few threads (about as many as the number of CPU cores) and each is given a large amount of
work to do

4 For GPU programming, there is low overhead for thread creation, so we can create one thread per loop
iteration

31 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



PARALLEL SOFTWARE — SPMD AMDZ1

- = loop iteration
Single-threaded (CPU)

// there are N elements Time —
for(i=0; i < N; i++) TO -
C[i] = A[i] + BJ[i]

Multi-threaded (CPU) T0
Tl

// tid is the thread id 2

// P is the number of cores I3

for(i=0;i < tid*N/P; i++)

C[i] = A[i] + B[i]

Massively Multi-threaded (GPU) T0

// tid is the thread id E

C[tid] = A[tid] + B[tid] 3

32 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLEL HARDWARE - SIMD AMDZ1

A Each processing element of a Single Instruction Multiple Data (SIMD) processor executes the same
instruction with different data at the same time

— A single instruction is issued to be executed simultaneously on many ALU units
— We say that the number of ALU units is the width of the SIMD unit

A SIMD processors are efficient for data parallel algorithms
— They reduce the amount of control flow and instruction hardware in favor of ALU hardware

33 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLEL HARDWARE - SIMD AMDZ1

A In the vector addition example, a SIMD unit with a width of four could execute four iterations of the loop
at once

A Relating to the apple-picking example, a worker picking apples with both hands would be analogous to a
SIMD unit of width 2

A All current GPUs are based on SIMD hardware

— The GPU hardware implicitly maps each SPMD thread to a SIMD “core”
— The programmer does not need to consider the SIMD hardware for correctness, just for performance
— This model of running threads on SIMD hardware is referred to as Single Instruction Multiple Threads (SIMT)

34 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



CHALLENGES OF PARALLELIZATION AMDZ1

4 On CPUs, hardware-supported atomic operations are used to enable concurrency
— Atomic operations allow data to be read and written without intervention from another thread

4 Some GPUs support system-wide atomic operations, but with a large performance trade-off
— Usually code that requires global synchronization is not well suited for GPUs (or should be restructured)

— Any problem that is decomposed using input data partitioning (i.e., requires results to be combined at the end) will
likely need to be restructured to execute well on a GPU

35 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PHILOSOPHY OF GPU ARCHITECTURE
FROM GENERAL PURPOSE COMPUTING PERSPECTIVE

CPU

A A
Control Control

T T

B .

Cache Cache

CPU vs GPU: Latency vs Throughput
— CPU/multicore: optimized for latency
— GPU/manycore: optimized for throughput

36 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

GPU

Heterogeneous computing with GPGPU
— Latency-optimized cores for logic part
— Throughput-optimized cores for compute part

AMD 1



CPU VS. GPU AMDZ1

4 Memory access
— CPU is optimized to memory access latency
— Take advantage of large amount of cache
— GPU is optimized to memory access bandwidth

— Take advantage of “0” overhead thread switching, large amount of computing thread and quick switching hide the memory
access latency and keep GPU core busy

A Core

— CPU has heavy core which is good at complex data structure, branch, pre-fetch, fit for serial code; with SIMD and
IPL, CPU cores are also fit for lightweight parallel computing

— GPU has large number of lightweight core, good at simple data layout, non-branch, fit for massive parallel
computing

37 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLEL COMPUTING WITH MANY-CORE GPU DEVICES AMDZ1

A Massive parallel thinking
— Not 4 threads or 16 threads with SIMD instruction extensions on CPU
— Image tens of thousands threads are in flight on GPU device with “zero” thread creation and scheduling overhead

— Enough parallelism is the key to explore the GPU horsepower
— It’s more important for 1/0 sensitive algorithm
— Carefully analysis the data dependency

A Scalability is the consequence to be carefully considered
— Scalability is an important topic on SMP architecture, it’s more important on many-core GPU devices
— Consider the overhead of inter-thread communication and atomic operation on GPU devices

A Design architecture-oriented algorithm instead of “text-book” algorithm

— Like, consider the cycles of computing instruction and cycles of memory access, replace memory access with
computing for performance speedup

38 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



THE NATURE OF CPU+GPU COMPUTING

CPU: scalar processing
+ Latency

+ Optimized for sequential and branching
algorithms

+ Single core performance )|
- Throughput :

AMD 1

GPU: parallel processing
+ Throughput computing
+ High aggregate memory bandwidth
+ Very high overall metal performance/watt

T - Latency

Graphics Workloads

Other Highly Parallel
Workloads

CPU+GPU provides optimal performance combinations for a wide range of platform configurations

39 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM AMDA
A CASE STUDY — WITH 4 CORE CPU

Step 1: analysis on algorithm and application

Step 2: automatic parallelization or explicit parallelization

Step 3: task/data parallel?

Step 4: parallelism granularity

Step 5: dependency

Step 6: communication

Step 7: load balance
fen( i, j)

. \ . \
doj=1,n doj=1,n/4 doj=3n/4+1,n
doi=1,n ] - doi=1,n doi=1,n

ali) =fen(i)) o data vet a(ij) = fen(i) | e a(i,j) = fen(i,j)
end do to 4 cores with end do end do

end do total 4 threads end do ) end do )

40 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM AMDA
A CASE STUDY — OPENMP ON 4 CORE CPU

Step 1: analysis on algorithm and application

Step 2: automatic parallelization or explicit parallelization

Step 3: task/data parallel?

Step 4: parallelism granularity

Step 5: dependency

Step 6: communication

Step 7: load balance
fen( i, j)

doj=1,n #pr.agma omp parallel for

s doj=1,n
doi=1,n doi=1,n

a(i,j) = fen(i,j) Loop unrolling, a(i,j) = fen(i,j)

end do openMP end do
end do end do y,

41 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM AMDA
A CASE STUDY — MOVE TO MASSIVE PARALLELISM

Step 1: analysis on algorithm and application

Step 2: automatic parallelization or explicit parallelization

Step 3: task/data parallel?

Step 4: parallelism granularity

Step 5: dependency

Step 6: communication

Step 7: load balance
fen( i, j)
| o \
doj=1,n > o icd n
doi = Ln - uint gidx = get_global id( 0);
a(i,j) = fen(i,j) Loop unrolling with a[gidx] = fcn[gidx];
end do very fine-granularity ene-€o

end do end-do J

42 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



PARALLEL ALGORITHM DESIGN FOR HETEROGENEOUS PLATFORM

A CASE STUDY — WITH GPU

fen( i, j)

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:

doj=1,n

doi=1,n

a(i,j) = fen(i,j)
end do
end do

43 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC

)

Loop unrolling with
very fine-granularity

}

task/data parallel?
parallelism granularity
dependency
communication

load balance

kernel void fen() {

a[gidx] = fcn[gidx];

analysis on algorithm and application

p

uint gidx = get_global id( 0);

automatic parallelization or explicit parallelization

AMD 1



A TYPICAL OPENCL CODE AMD 1
HOST PART

—

Start int main(int argc, char ** argv)

| t | d o clGetDevicelDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,
nitialize devices devices, NULL);

clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

Co py data to GPU clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)src_image,
0, NULL, NULL)

rogram(program, numDevices,
Execute GPU Ke rne| clCreateKernel(program, "vecadd", &status);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize,

" ReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C,
Copy data back to CPU e atasize

Other instructions

44 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



A TYPICAL OEPNCL CODES

45

int main(int argc, char ** argv)

clGetPlatformIDs(numPlatforms, platforms, NULL);

clGetDevicelDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,
devices, NULL);

clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
datasize, A, &status);
clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)src_image,
0, NULL, NULL)

clCreateProgramWithSource(context, 1, (const char**)&source, NULL, &status);
clBuildProgram(program, numbDevices, devices, NULL, NULL, NULL);
clCreateKernel(program, "vecadd", &status);
clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize,

NULL, O, NULL, NULL);

clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, O, datasize, C,
0, NULL, NULL);

AMD 1

__kernel void vecadd(__global int *A,
__global int *B,
__global int *C) {
int idx = get_global_id(0);

Clidx] = A[idx] + B[idx];

INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



AGENDA AMDZ1

A

What’s OpenCL

A

Fundamentals for OpenCL programming

A

OpenCL programming basics
— OpenCL architecture and platform
— OpenCL key components and APls

A

OpenCL programming tools

A

Demos

46 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



OPENCL ARCHITECTURE BIG PICTURE AMDZ1

OpenCL

¢ § ¢

Programs Kernels Memo ects Command Queues

. dp mal ll

_ kemel void Images | Buffers ||| —
d I[global const float dp_mul

ILr:II;IJn[EI r.unuul:mﬂmtfll:, * CPU program binary ang[d] value In Qut of

global float o) e ,Drdar urdar

‘ I Tval

c[id] = afic] * bfid]: _[2] |

3 value

’ “] GPU

\, N,
, Create data & y
Compile code arguments 4

& Copyright Khroncs Group, 2004 - Page 15
47 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



OPENCL ARCHITECTURE OVERVIEW AMDZ1

Start int main(int argc, char ** argv)

{

A OpenCL architecture abstracts the operation into four parts

{
— —_—
clGetPlatformIDs(numPlatforms, platforms, NULL); |
T . clGetDevicelDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,
Initialize devices devices, NULL);
clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

{

f datasize, A, &s!at;s): - !
Copy data to GPU clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)src_image,
0, NULL, NULL)
A P I a tfo r m m O d e | f 1 clBuildProgram(program, numDevices, :i‘evices, NULL, NULL, NULL); - |
Execute GPU Kernel clCreateKernel(program, "vecadd", &status);
— Defines the OpenCL devices ~— |
‘ t - | Copy data back tO CPU ) clEnque:’ezeualc:f:‘flfi[()c;mdﬂueue, d_C, CL_TRUE, 0, datasize, C,
Execution model - -
}

— Defines OpenCL devices actions and inter-actions Other instructions

4 Memory model
— Defines data location and communications among OpenCL OpenCL ZJ @

devices

‘ Pr H | . Context |
Og ra m m I ng m Od el |Memory’0bjem| ICnmmarzuueued
— Defines how different OpenCL devices working together for a - ¢ ¢ B

- o] ' Butes
single problem ¥ o [l e
arg[1] value Queue Queue

dp_mul
GPU program binary

fintid = get_global id[0);
icﬁd] =afid] * bfid):

angl?] value

GPU

;

© Copyright Khronos Group, 2004 - Page 15

48 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



PLATFORM MODEL AMDZ1

A The model consists of a host connected to one or more OpenCL devices
— A device is divided into one or more compute units
— Compute units are divided into one or more processing elements

— Each processing element maintains its own program counter

A The host is whatever the OpenCL library runs on - '"m ﬂ
onn n

— 86 CPUs for GPUs oo /7
A Devices are processors that the library can talk to Processing H”M‘|nnn 5 H Host

— CPUs, GPUs, and generic accelerators Fevnent EOo H.[I
A For AMD H[HH |

— All CPUs are combined into a single device (each core is a compute unit and ol COm\pEte Device

. Compute Unit
processing element)

— Each GPU is a separate device

A Every vendor has their implementation of platform model, OpenCL API
provides the details of platform information

49 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



EXECUTION MODEL AMDZ1

A “Host” program and “Kernel”

— Host program is just a traditional CPU program consists of all OpenCL components
— Kernel runs on the OpenCL devices to perform off-loaded computing workloads

A “Context” is defined in host to control Kernel execution
— “Program” is the object to be JIT compiled into “Kernel” and executed on devices
— “Memory” is the object as the data communication unit
— “Command queue” is existing among host and devices to control devices behavior roTereip (. My

work-group size Sx

work-item work-item
Wy Sy+s,. wy S_v's," e (W Sy4s, Wy Syosy.

Sy syi ={0, 0 {5x: syi =(8,1.0)

A Execution model defines how threads are organized in Kernel
— Each thread is a work-item

work-group size S

y

work-item work-item
fwy Sx"sx w!, Syos:/ Wy Sx*sx. w!, Sy-s:/

NDRange size

— Work-items are organized as work-group

(x5 =(0.8,71) | (550 = (561 S )

e

— Work-groups are organized as a NDRange

e — |
NDRange size Gy

50 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



MEMORY MODEL

4 Memory model defines

— The type of memory objects
— The location of different memory objects

4 Two kinds of memory objects

— Buffer and image

AMD 1

Compute Device

Compute unit 7

Private Private
memory 7 memory ¥
I LI N I
| PE1 PE M
A F.
h 4
Local
memory 7

h 4

Compute unit N

Private
memory 7

PE 1 PE M

Private
memory

N

Y

Local
memory N

A

h

Global/Constant Memory Data Cache

L3

4

Read / Write
access

Read-only
access

Read / Write
access

Global Constant Local Private

Host Dynamic Dynamic Dynamic No allocation
allocation allocation allocation
Read / Write Read / Write No access No access
access access

Kernel No allocation Static allocation | Static allocation | Static allocation

Read / Write
access

51 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Global Memory

Constant Memory

Compute Device Memory




PROGRAMMING MODEL AMDZ1

4 The OpenCL execution model supports data parallel and task parallel programming models

4 Data parallel programming model
— One-to-one mapping between work-items and elements in a memory object
— Work-groups can be defined explicitly or implicitly (specify the number of work-items and OpenCL creates the
work-groups)
A Task Parallel Programming Model

— The OpenCL task parallel programming model defines a model in which a single instance of a kernel is executed
independent of any index space

— Under this model, users express parallelism by:
— Enqueuing multiple tasks, and/or
— Enqueing native kernels developed using a programming model orthogonal to OpenCL
4 Synchronization
— Possible between items in a work-group
— Possible between commands in a context command queue

52 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



OPENCL FRAMEWORK AMDZ1

4 From API definition point of view, OpenCL framework consists of three parts

4 OpenCL Platform layer

— The platform layer allows the host program to discover OpenCL devices and their capabilities and to create contexts
— Platform, device, context

A OpenCL Runtime
— The runtime allows the host program to manipulate
— Command queue, memory objects, program, Kernel, kernel execution, event......

4 OpenCL Compiler

— The OpenCL compiler creates program executable that contain OpenCL kernels. The OpenCL C programming

language implemented by the compiler supports a subset of the ISO C99 language with extensions for parallelism.
contexts once they have been created

53 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



OPENCL PROGRAMMING DIAGRAM AMDZ1

Select a platform

Sta rt int main(int argc, char ** argv)

Select devices

clGetDevicelDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,
devices, NULL);
clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

Initialize devices

Create context

Copy data to GPU

Command queue

clCreateKernel(program, "vecadd", &status);
clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize,

Execute GPU Kernel

Memory objects

clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, 0, datasize, C,
0, NULL, NULL);

Copy data back to CPU

Create and build
program

Other instructions
Create and execute

Kernel

Release objects

54 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC




OPENCL PLATFORM LAYER AMDA
SELECTING A PLATFORM AND SELECTING DEVICES

" 4 .
cl int clGetPlatformIDs (cl uint num_entries, clGetDevicelDs" (cl_platform_id platform,
cl_platform id *platforms, cl_device_type device_type,
cl_uint *num_platforms) cl_uint num_entries,

cl device id *devices,
cl uint *num_devices)
A This function is usually called twice
— The first call is used to get the number of platforms available to the implementation
— Space is then allocated for the platform objects
— The second call is used to retrieve the platform objects

A Once a platform is selected, we can then query for the devices that it knows how to interact with
A \We can specify which types of devices we are interested in (e.g. all devices, CPUs only, GPUs only)
A This call is performed twice as with clGetPlatformIDs

— The first call is to determine the number of devices, the second retrieves the device objects

55 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



CONTEXT

cl context  clCreateContext (constcl context properties *properties,

cl uint num_devices,

const cl_device id *devices,

void (CL_CALLBACK *pfn_notify)(const char *errinfo,
const void *private_info, size_t cb,
void *user_data),

void *user data,

cl_int *errcode_ret)

A A context refers to the environment for managing OpenCL objects and resources

4 To manage OpenCL programs, the following are associated with a context

56

Devices: the things doing the execution

Program objects: the program source that implements the kernels
Kernels: functions that run on OpenCL devices

Memory objects: data that are operated on by the device
Command queues: mechanisms for interaction with the devices

— Memory commands (data transfers)

— Kernel execution
— Synchronization

INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

AMD 1



CREATE CONTEXT AMDZ1

4 When you create a context, you will provide a list of devices to associate with it
— For the rest of the OpenCL resources, you will associate them with the context as they are created

Context

Empty context

57 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



OPENCL RUNTIME - COMMAND QUEUES AMDZ1

cl command queue clCreateCommandQueue (cl context context,
cl device id device,
cl command queue properties properties,
cl_int *errcode_ret)

4 A command queue is the mechanism for the host to request that an action be performed by the device
— Perform a memory transfer, begin executing, etc.

4 A command gueue establishes a relationship between a context and a device

A A separate command queue is required for each device

4 Commands within the queue can be synchronous or asynchronous

58 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



COMMAND QUEUES AMDZ1

4 Command queues associate a context with a device
— Despite the figure below, they are not a physical connection

Context

Command queues

59 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



MEMORY OBIJECTS AMDZ1

cl mem eclCreateBuffer (cl context context,
cl mem flags flags,
size t size,
void *host ptr,
cl _int *errcode ret)

4 Memory objects are OpenCL data that can be moved on and off devices for the given context
— Objects are classified as either buffers or images

A Buffers

— Contiguous chunks of memory — stored sequentially and can be accessed directly (arrays, pointers, structs)
— Read/write capable

4 Images
— Opaque objects (2D or 3D)
— Can only be accessed via read_image() and write_image()
— Can either be read or written in a kernel, but not both

60 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



MEMORY OBIJECTS AMDZ1

4 Memory objects are associated with a context
— They must be explicitly transferred to devices prior to execution

Uninitialized OpenCL memory objects—the original
data will be transferred later to/from these objects

Context //

Original input/output
data
(not OpenCL
memory objects)

61 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



TRANSFERRING DATA

cl int clEnqueneWriteBuffer (c]| command queue command queue,

cl_mem buffer,

cl bool blocking write,

size t offset,

size tch,

const void *ptr,

cl uint num_events _in_wait_list,
const cl_event *event wait list,
cl event *event)

A OpenCL provides commands to transfer data to and from devices

— clEnqueue{Read| Write}{Buffer|Image}

— Copying from the host to a device is considered writing

— Copying from a device to the host is reading

4 The write command both initializes the memory object with data and places it on a device

AMD 1

— The validity of memory objects that are present on multiple devices is undefined by the OpenCL spec (i.e. are

vendor specific)

4 OpenCL calls also exist to directly map part of a memory object to a host pointer

62 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



TRANSFERRING DATA AMDZ1

4 Memory objects are transferred to devices by specifying an action (read or write) and a command queue

— The validity of memory objects that are present on multiple devices is undefined by the OpenCL spec (i.e. is vendor
specific)

The images are
redundant here to
show that they are
both part of the
context (on the
host) and
physically on the
device

Context

Images are written to a device

63 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PROGRAMS AMDZ1

A A program object is basically a collection of OpenCL kernels
— Can be source code (text) or precompiled binary
— Can also contain constant data and auxiliary functions

4 Creating a program object requires either reading in a string (source code) or a precompiled binary

A To compile the program

— Specify which devices are targeted
— Program is compiled for each device
— Pass in compiler flags (optional)
— Check for compilation errors (optional, output to screen)

64 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



PROGRAMS AMDZ1

A A program object is created and compiled by providing source code or a binary file and selecting which
devices to target

Program

65 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



CREATING PROGRAMS AND COMPILING PROGRAMS AMDZ1

cl program clCreateProgramWithSource (cl_context context, cl_int clBuildProgram (cl_program program,
cl uint count, cl uint num_devices,
const char **strings, const ¢l _device id *device list,
const size_t */engths, const char *options,
cl int *errcode_ret) void (CL_CALLBACK *pfn_notify)(cl_program program,

void *user_data),
void *user data)

h

The program object is created from strings of source code, JIT capability

h

The program object also can be created from a compiled executable binary

A If a program fails to compile, OpenCL requires the programmer to explicitly ask for compiler output
— A compilation failure is determined by an error value returned from clBuildProgram()

— Calling clGetProgramBuildinfo() with the program object and the parameter CL_PROGRAM_BUILD STATUS returns a
string with the compiler output

66 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



KERNELS

A A kernel is a function declared in a program that is executed on an OpenCL device
— A kernel object is a kernel function along with its associated arguments

— Kernel objects are created from a program object by specifying the name of the kernel function

A Must explicitly associate arguments (memory objects, primitives, etc) with the kernel object

67 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Cotext

% .

Kernels

AMD 1



KERNELS

cl _kernel clCreateKernel (cl program program,
const char *kernel name,
cl_int *errcode ref)

4 There is a high overhead for compiling programs and creating kernels

— Each operation only has to be performed once (at the beginning of the program)
— The kernel objects can be reused any number of times by setting different arguments

Read source
codeintoan |——-> clCreateProgramWithSource

v

array

clBuildProgram |5

clCreateKernel

clCreateProgramWithBinary i)

68 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

AMD 1



SETTING KERNEL ARGUMENTS AMDZ1

cl int clSetKernelArg (cl _kernel kernel,
cl uint arg index,
size targ size,
const void *arg value)

A Kernel arguments are set by repeated calls to clSetKernelArgs

4 Memory objects and individual data values can be set as kernel arguments

Data (e.g. images) are
set as kernel

arguments
69 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



EXECUTING THE KERNEL

A A

Kernels execute asynchronously from the host

AMD 1

Need to set the dimensions of the index space, and (optionally) of the work-group sizes

— clEnqueueNDRangeKernel just adds is to the queue, but doesn’t guarantee that it will start executing

A A thread structure defined by the index-space that is created
— Each thread executes the same kernel on different data

70 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Context

An index space of —

threads is created
(dimensions match
the data)




EXECUTING THE KERNEL AMDZ1

cl int clEnqueuneNDRangeKernel (c] command queue command queue,
cl_kernel kernel,
cl uint work_dim,
const size t *global work offset,
const size t *global work_size,
const size t *local work_size,
cl uint num_events in wait list,
const cl_event *event wait_list,
cl_event *event)

A Tells the device associated with a command queue to begin executing the specified kernel
4 The global (index space) must be specified and the local (work-group) sizes are optionally specified

4 A list of events can be used to specify prerequisite operations that must be complete before executing

71 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



THREAD STRUCTURE AMDZ1

A Massively parallel programs are usually written so that each thread computes one part of a problem
— For vector addition, we will add corresponding elements from two arrays, so each thread will perform one addition
— If we think about the thread structure visually, the threads will usually be arranged in the same shape as the data

A Consider a simple vector addition of 16 elements
— 2 input buffers (A, B) and 1 output buffer (C) are required

Array Indices

AN

Vector Addition: o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
AN N B B

¢ AN N B B

72 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



THREAD STRUCTURE

A Create thread structure to match the problem
— 1-dimensional problem in this case

Thread structure:

Vector Addition:

73 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Thread IDs

AMD 1



THREAD STRUCTURE AMDZ1

A Each thread is responsible for adding the indices corresponding to its ID

e

Thread structure:

—
Vector Addition:
A
+
B
C

74 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC




THREAD STRUCTURE

A

OpenCl’s thread structure is designed to be scalable

A A

Work-items are organized as work-groups

— Work-groups are independent from one-another (this is where scalability comes from)

A A

— A global id (unique within the index space)
— A work-group ID and a local ID within the work-group

NDRange size G

~l

75 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Work-items can uniquely identify themselves based on:

An index space defines a hierarchy of work-groups and work-items

Each instance of a kernel is called a work-item (though “thread” is commonly used as well)

work-group size Sx

work-group (W, , wy,)

work-item work-item
Wy Sy +5,. Wy S,{'s',' (W, Sx*sx w, Srs./
sy sy,i =(0, 0) Sy sy; = "Sx- 1,0)
work-item work-item
(W, Sx»sx, Wy, Sy'sj/ (W, Sx*sx H!, Sy—s:/
"Sx . syi = (0, Sy-',l (5, S_'..' = 1'51(-.', Sy-')

|
I

NDRange size Gy

AMD 1

work-group size Sy




THREAD STRUCTURE AMDZ1

A

API calls allow threads to identify themselves and their data

A

Threads can determine their global ID in each dimension
— get_global_id(dim)
— get_global_size(dim)

A Or they can determine their work-group ID and ID within the workgroup
— get_group_id(dim)
— get_num_groups(dim)
— get_local_id(dim)
— get_local_size(dim)

76 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



MEMORY MODEL

AMD 1

A4 The OpenCL memory model defines the various types of memories (closely related to GPU memory

hierarchy)

4 Memory management is explicit

— Must move data from host memory to device global memory, from global memory to local memory, and back

A Work-groups are assigned to execute on compute-units

— No guaranteed communication/coherency between different work-groups (no software mechanism in the OpenCL

specification)

Memory

Global

Constant

Local

Private

Description

Accessible by all work-items

Read-only, global

Local to a work-group

Private to a work-item

77 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Compute Device

Compute unit 7

Compute unit N

Private
memory 7

Private Private
memory M memory 7

Private
memory M

. 3 A
{
Local
memory N
W

Global/Constant Memory Data Cache

an

H

y

Global Memory

v

Constant Memory

'
N
h 4

Compute Device Memory



WRITING A KERNEL AMDZ1

4 One instance of the kernel is created for each thread

A Kernels:
— Must begin with keyword __ kernel
— Must have return type void
— Must declare the address space of each argument that is a memory object (next slide)
— Use API calls (such as get_global_id()) to determine which data a thread will work on

A Address Space ldentifiers:
— __global, memory allocated from global address space
— __constant, a special type of read-only memory
— __local, memory shared by a work-group
— __private, private per work-item memory
— __read_only/__write_only, used for images

A Kernel arguments that are memory objects must be global, local, or constant

78 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



A TYPICAL OEPNCL CODES

79

int main(int argc, char ** argv)

clGetPlatformIDs(numPlatforms, platforms, NULL);

clGetDevicelDs(platforms[0], CL_DEVICE_TYPE_GPU, numDevices,
devices, NULL);

clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);

clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR,
datasize, A, &status);
clEnqueueWriteBuffer (myqueue , d_ip, CL_TRUE,0, mem_size, (void *)src_image,
0, NULL, NULL)

clCreateProgramWithSource(context, 1, (const char**)&source, NULL, &status);
clBuildProgram(program, numbDevices, devices, NULL, NULL, NULL);
clCreateKernel(program, "vecadd", &status);
clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_A);
clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize,

NULL, O, NULL, NULL);

clEnqueueReadBuffer(cmdQueue, d_C, CL_TRUE, O, datasize, C,
0, NULL, NULL);

AMD 1

__kernel void vecadd(__global int *A,
__global int *B,
__global int *C) {
int idx = get_global_id(0);

Clidx] = A[idx] + B[idx];

INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



COPYING DATA BACK AMDZ1

A The last step is to copy the data back from the device to the host

4 Similar call as writing a buffer to a device, but data will be transferred back to the host

Copied back
from GPU

80 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



RELEASING RESOURCES AMDZ1

A Most OpenCL resources/objects are pointers that should be freed after they are done being used

A There is a clRelase{Resource} command for most OpenCL types
— Ex: cIReleaseProgram(), clReleaseMemObiject()

81 | INTRODUCTIONTO OPENCL| OCTOBER 23,2013 | PUBLIC



COMPILING AND RUNNING OPENCL APPLICATION AMDZ1

A Host program is compiled by traditional compiler
— gcc, MSVC++

OpenCL (':.t::rmpiheu?~q

Built-In
Library

A Kernel is compiled by OpenCL compiler
— Both CPU and GPU computing device shares the ,
LLVM IR 1 Linker

same front-end (LLVM extension for OpenCL) OpenCL
— LLVM AS generates x86 binary Source )—

— LLVM IR-to-AMD IL generates AMD GPU binary { o;tli_nv«.ger,
Y

— Can be JIT for cross-platform

_}..

—rO> oo OI

A Running OpenCL application

ImB—--r-::r::U

— For CPU as computing device, OpenCL runtime \\ 7 v /
automatically determines the number of processing LLVM AS / \ AMD ”—I
elements

— For GPU as computing device, Kernel runs as the / \
exact instructions CPU GPU

82 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



AGENDA AMDZ1

4 What’s OpenCL

A4 Fundamentals for OpenCL programming
A OpenCL programming basics

A4 OpenCL programming tools

A4 Demos

83 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



COMPLETE TOOL-CHAIN FOR OEPCNL PROGRAMMING AMDZ1

4 AMD APP SDK AMDI

— SDK for OpenCL programming c D D EXI

— Includes header files, libraries, compiler and sample codes
4 AMD CodeXL

— All-in-one debugger and profiler for OpenCL programming
— With AMD Kernel Analyzer

— Static OpenCL Kernel performance analyzer

— Expose IL and ISA of various GPU platform

A Library
— Bolt, a C++ template library
— AMD clAmdBlas, AMD clAmdFFT, Aparapi ({
— cIMAGMA, OpencCV, etc....... ;E_-';j
Java

84 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



KERNEL DEBUGGING AND PROFILING AMDA
USING CODEXL

FIE XL Meet the Holy Grail of Heterogeneous Compute Tools

Debug. Profile. Analyze.

A4 AMD CodeXL is the all-in-one tool for
— Powerful GPU debugging
— Comprehensive GPU and CPU profiling
— Static OpenCL™ kernel analysis capabilities

A AMD CodeXL is available both as a Visual Studio® extension and a standalone user interface application for
Windows® and Linux®.

85 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



CPU PROFILING KEY FEATURES AND BENEFITS AMDZ1

4 Diagnose performance issues in hot-spots

— AMD CodeXL uses hardware-level

pe rfo rma n Ce CO u nte rS a n d I nstru Ctlo n-ba Sed ;‘ classic - CodeXL | Profile Mode (CPU: Instruction-based Sampling)
. . ‘l File Edit View Debug Profile Tools Window Help
sampling to provide valuable clues about | 26 > 212121 HBE ACFORGEDEROSME wotms v LA A U0COED®EE S
CodeXL Profile Session Explorer & X ‘ P | CPU: Sep 21, 2012 11:19:56 x| ‘ pu | CPU: Sep 21, 2012 11:20:33 ‘
. .« . . S el
I n effl C I e nt p ro g ra m b e h a V I O r- H " aS;’:p 21, 201211:19:56 - Time-... [ Profile Overview || ] Call Chain [ l System Data | | dassic.exe -Data || ] ...ource\Samples\dassic\Debug\dassic.exe - Src/Dasm [ l
ep 2L A2 2058 - nstruc. Function : [[0xmf1wo - 0x10f122f] : multiply_matrices v] Pid : [8376 VJ Tid : [All '] View : [All Data '] [Separabe none v] » Type: »
— Use rates and ratios to quickly measure the s
efficiency of functions, loops and program i
0|
statements ” i
.
Address Line Source Code Bytes 1BS fetch IBS fetch attempt  IBS fetch comp IBSLLITLB hit IBSIC miss IBSICF #
60 // Multiply the two matrices
> 0101186 61  for (inti=0;i< ROWS;i++){
> 0x0flla5 62 for (intj=0;j < COLUMNS ; j++) { 5 5 5 5
> 0x10f11c0 63 float sum =0.0; 5 5 5 5
> 0d0fllcS 64 for (intk =0 k <« COLUMNS ; k++) { 4039 4039 4039 4039 &€
4 0x0f11e0 65 sum = sum + matrix_a[i][k] * matrix_b[k][j] ; 7997 7997 7997 7997 7
0x10f11e0 mov eax,[ebp-04h] 8B45FC 4033 4033 4033 4033 4
0x10f11e3 imul eax,eax,00000fa0h 69 CO AOOFO00 ...
0x10f11e9 mov ecx,[ebp-10h] 8B4DFO
0x10fllec imul ecx,ecx,00000fa0h 69 C9 AOOF00 ... ]
0x10f112 mov edx,[ebp-10h] 8B 55 F0 |
0x10f11f5 fid dword [eax+edx*4+00406120h] D984902061 ... |=
0x10f11fc mov eax,[ebp-08h] 8B45F8 1,71
|0x10f11FF fmul dword [ecx+eax*4+007d6a28h] D8 8C81 28 6A... 3963 3963 r§96§ 393 Y
0:10f1206 fadd dword [ebp-Och] D845F4 W
0x10f1209 fstp dword [ebp-Och] D95D F4 1 1 1 1
> 0x10f120c 66 }
0x10f120e 67 matrix_r[i][j] = sum; 15 15 15 15 1
> 0101224 68 }
> 0x10f1226 69 h . x
< W ] »
Module : C:\Users\sibbonsmain\CodeAnalyst\CA_Win\source\Samples\dassic\Debug\dassic.exe  File : c:\users\sibbonsmain\codeanalyst\ca_win\source\samples\dassic\dassic.cpp
Properties & X
Process Not Running
To run an application, select a run mode and run the application
Ready

86 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC




CPU PROFILING KEY FEATURES AND BENEFITS

4 Analyze Call Chain relationships

87

— Diagnose issues from a caller / callee
relationship perspective.

— Quickly determine which call trees are using
the most resources (time or events) to isolate
potential optimization opportunities.

INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

1 MyApp - CodeXL | Profile Mode (CPU: Time-based Sampling) ——“

File Edit View Debug

Profile  Tools

Window Help

AMD 1

TR PRMHEYNNE DNSRARRETTT O % ME; woknenx

CodeXL Profile Sessio.. & X | pu

4 MyApp
Sep 24, 2012 02:06:.
Sep 24, 2012 02:11:..
Sep 24, 2012 02:13:..
Sep 24, 2012 02:17:..

B b BEET
Y z s TQORGO R YL

Sep 24, 2012 02:18:..,
Sep 24, 2012 02:20....
Sep 24, 201202:21:..,
Sep 24, 201202:22:..,
Sep 24, 201202:24:..,
Sep 24, 2012 02:25:..,

CPU: Sep 24, 2012 02:25:38 @ |
calchen
Prncess: |:| Display System Libraries Functions
Functions

Function (153 functions, 15 shoum) £ of Paths Path Samples Avg. ;Z:npp;:; Self Samples Deep Samples % of Deep Samples Source File Module o
pow 39 11 54 25 21 ] 58% math.h(498) MyApp.exe |=
mainCRTStartup 58 202 35 02 ] 56% crtexec(361) MyApp.exe
_tmainCRTStartup 58 202 3.5 202 -: 56% criexe.c(378) MyApp.exe —
main 37 201 3.5 ] 56% myapp.cpp(l0) Myhpp.exe
Worker:doWork a7 201 3.3 4 M ] 56%workercppl(6) Myhpp.exe
_Pow_int<double> 16 152 9.5 142 152 42% math.h{484) Myhpp.exe
SemiWerker:doAsyncWork 51 137 21 137 38% semiworker.cpp(43) MyApp.exe
SemiWarker:Calc 35 118 34 6 118 33% semiworker.cpp(28) MyApp.exe ~

< T | +

Immediate Ancestors and Children of function: “pow”

Parents Func Samples Deép Samples % of Deep Samples Self + Children Func Samples Dea'p Samples % of Deep Samples
Worker:doWork 4 WM ]46% | _Pow_int<doubles 142 i
SemiWorker:Calc 6 wug__~ |z (self) % sy |7

Paths containing function: pow
Function Self Downstream Downstream *
Samples Samples Samples %

4 SemiWorker::doAsyncWork 8 39% 5
4 SemiWorker:Calc 83

> pow 12 i1

+ manCRTtrtup ] S
+ manCRTSart e B

" . 128




CPU PROFILING KEY FEATURES AND BENEFITS AMDZ1

A Supports multi-core Windows and Linux
platforms
— AMD CodeXL supports all of the latest AMD B o cooor PV U oo B )

File Edit View Debug Profile Tools Window Help

processors on both Windows and Linux ZE > MMNDNIE NOFOEEEDDTE 0% B ke
p|atf0rmS Codel. Profe sessonBxpiorer & X | 7 CPU: Sep 21, 2012 11:20:38 o |

4 classic =
Sep 21, 201211:19:56 - Time-... | | Profie Overview (1] | SystemData [
SAZLAD AR i Agaregate by: {Prooesses v] View:[AlI Data '] [Separahe by core v][ CPU Filter ] k=

Process -> Pid -> Module  1BSfetch - CO IBSfetch- C1  IBSfetch killed - CO  IBS fetch killed - C1 IBS fetch attempt - CO IBS fetch attempt - C1  IBS fetch comp - C #
4 classic.exe 2740 9803 2740 9803
4 PID:8376 2740 9803 2740 9803

ENG64.5YS

EX64.5YS

classic.exe

KernelBase.dll

kernel32.dll

msverl00d.dil

ntdll.dll

Ntfs.sys

SRTSP64.5YS

dxgkrnl.sys

dxgmmsl.sys

tepip.sys

win32k.sys

SynTPsys

atikmdag.sys

e JECA .

[t

1 process, Total: 16106500 samples, 100.00% of shown samples

Properties
CPU Profile Session

Sep 21, 2012 11:20:38: Instruction-based Sampling
Family 0x10, Model 6, 2 core(s)

P T VI SR N U U S AORIPE UG S L V- SO DA G JMS 1_NS RL U J o

88 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



CPU PROFILING KEY FEATURES AND BENEFITS AMDZ1

A Extends Microsoft Visual Studio

— Microsoft Visual Studio user can analyze their

programs without leaving the Visual Studio
env|ronment. @0 MyApp - Microsoft Visual Studio (Adminisuaion i e AT = ~ n - - = =20

File Edit View VAssist{ Project Build Debug CodeXlL Team Data Tools Test CodeMaid Window Help

The AMD CodeXL Visual Studio plug-in provides 4. . 2% * ‘o= | S5 3@Bx BB JihUlse|qas
piug-in p 000 HEG LS NEARG =450 5.
a | I Of t h e p rofi I i n g feat u res s u p po rte d by t h e Solution Explorer v B X Q CPU: Sep 24, 2012 02:41:16 ¢ [EEIEIIE RS SemiWorker.h Worker.cpp Worker.h i
E'E'éj'%"'[.}_ fi Call Chain [ E
. ; Selution ‘MyApp' (1 project) el thaln ;
stand-alone AMD CodeXL for Windows GUI- T wme o987 EJogiy syt s rcor g
]
> E’f External pependencwas Functions o
based tOOI 4 |7 Header Files - . /:;
. ] SemiWorker.h Function (133 functions, 14 shown) #of Paths Path Samples vy, Sampp\a; Self Samples Deep Samples % of Deep Samples 5, i ?
n] targetverh per Pat g
] Workerh pow 70 72 39 b 274 | 75% |z g
[ Resource Files il o0 4y =3 4y | B0
4 |5 Source Files EWU_VkEI'UdUWWk 36 27 39 8 A7 60% i
e MyApp.cpp mainCRTStartup 56 a1 39 a7 -: 60% a1
& Sem\Wérker . _ tmainCRTStartup 56 217 39 17 -: 0%
& Work PP _Pow_int<double> 16 140 88 132 141 9%
orker.cpp SemiWorker:doAsyncWork 49 130 21 130 6% se
SemiWorker: Calc E2) 116 31 3 116 32%se ™
4| (1] 3
Immediate Ancestors and Children of function: "Worker::doWark”
Parents Func Samples Deép Samples % of Deep Samples Self + Children Func Samples Deép Samples % of Deep Sample
WarkerzdoWork 8 W ] 0% pow bil m 9% ;|
main 0 n7 I:l 50 std::operator< < <std... 0 12 2%
(self) 8 (8 self) 1% ~
Paths containing function: Warker::doWark
Function Self Downstream Downstream  *
Samples Samples Samples %
4 _imainCRTStatup 27 N
+ main 27 [ . .~
 MWorkersdoWork 1 20 Y | o'

Cod.. CRESTM B2 Class..

Ready

89 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



GPU DEBUGGING KEY FEATURES AND BENEFITS AMDZ1

4 Real-time OpenCL and OpenGL API-
level debugging

— Allows locating API function calls and & tessiossssss=iessvessss o

File Edit View WVAssistX Project Build Debug CodeXl Team Data Tools Test CodeMaid Window Help

Pl E- S @ 4 B9 - - E-E b [pebug Win32 =2 R HFGE BB - s (Y9 e
the code paths that led to them i a s alne A EE > NI ARE e BT S e
CodeXL Debugging Explorer NBody.cpp

a D o MBody.runCLKernels.status '| o I‘i) status = clEnqueueMDRangeKernel( commandQueue, kernel, 1, MULL, glebalThreads, localThreads, 0, MULL, MULL)
4 iy NBody “does not support requested number of work items.";
> ] GL Context1 return SDK_FATLURE;
3 CLContext1 (deleted) )
4 [ CLContext2
> L2 Buffers status = clEnqueueNDRangekernel(
commandQueue,
kernel,
1,
NULL,
globalThreads,
localThreads,
a,
NULL,
NULL);
CHECK_OPENCL_ERROR(status, "clEngueueNDRangeKernel failed.");

< X 5

> :E> Command Queues
e OpenCL Programs

// Read data for verification or display
status = clEnqueueReadBuffer(
commandQueue,

3

CodeXL Function Calls History - CL Context 2 LA Call Stack

—_—— =

> 1 X
ﬂ::-iE?;- MName

Lang ~
n NBody.exe!NBody:runCLKernels() Line 484
NBody.exeldisplayfunc() Line 704 /g
=) ciSetkemelarg(PL Kemel 1, 6, 4, 0x2BFA20) 9:ugi-t:::ig:utmﬂ!”tccpil - 130: bytes EE
= glut32.dll!iglutMainLoop() + 69 bytes =
=| clSetKernelArg(P1 Kemnel 1, 7, 4, 0x2BFA24) NBody.exelmain{) Line 945 c/c

NBody.exe!_tmainCRTStartup() Line 278
=| cGetkernelWorkGrouplnfo(P1 Kernel 1, 02477730, CL_KERNEL_LOCAL_MEM_SIZE, §, ... NBody.exe!mainCRTStartup() Line 188

| clGetKernelWorkGrouplnfo(P1 Kernel 1, 0x2477730, CL_KERNEL_COMPILE_WORK_GR... [ kemel32.dIl!BaseThreadInitThunk() + 17 bytes
# cdEnqueueNDRangeKernel(0x02ac9h38, P1 Kernel 1, 1, 0x000000, {1024}, {256}, 0, 0:000. ntdlldIlRtlInitializeExceptionChain() + 98 bytes

25 OpenCL function calls

=) dGetkKemelWarkGrouplnfo(P1 Kernel 1, 0x2A77730, CL_KERNEL_WORK_GROUP_SIZE, 4..

Pu OIS Soluti.. B

odeXL Properties [EREEIEEIY WY Bre

90 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



GPU DEBUGGING KEY FEATURES AND BENEFITS AMDZ1

4 Online OpenCL kernel debugging

— Works with present hardware.
Requires no special configuration or & nessyisio eissine - vieeser visalsiae fevirizrersn . |

File Edit View VAssist{ Project Build Debug CodeXL Team Data Tools Test CodeMaid Window Help
Jikyse | @A

changes to the code. Develop and RN T I Y Ve R Ry N i [ E] HlEEE k=Pl Ei
. . . Phow | EESE e %@ O EEEZ2|U0RG ES@a - inEr IR | ANS =% T T T o workkemx [0 |2
debug on a single computer with just FPETTETEEETTT . o
GD kernel

one GPU. Step through the workflow |- % s

> [E] GL Context1 nbody_sim(
__global floatd4* pos ,

of a single work item or compare L B Cooment el flomte- vel,

int numBodies,

> e Buffers float deltaTime,

values across all work items. + ‘8. Commond Queues fony deens

4 |_/I OpenCL Programs _ local float4™ localPos,
4 [7) OpenCLProgram1 __global float4® newPosition,
=] Kemell - nb... __global float4® newVelocity)

unsigned int tid = get local id(@);
unsigned int gid = get global id(@);
unsigned int localSize = get local size(@);

/I Number of tiles we need to iterate
unsigned int numTiles = numBodies / localSize;

// position of this work-item
float4 myPos = pos[gid];
floats acc = (float4)(e.ef, @.ef, v.ef, 0.af);|

Watch 1 ~ 0 X CallStack

MName Value Type =+ Mame
1 pos[16] {0.000000, 0.000000, 0.000000, 0.000000} 3, =| floatd | __OpenCL_nbody_sim_kernel() Line121
5 numBodies 1024 & ~|int AMDOpenCLDebug.dIlDx0f712799()

o0 vel[16] {0.000000, 0.000000, 0.000000, 0.000000} % - floatd AMDOpenCLDebug.dlliD:0f712b3d()
amdocl.dlllclGetSamplernfo() + 30760 bytes
amdocl.dlllclGetSamplerinfo() + 31337
amdocl.dlllclGetSamplerInfol) + 954 b
amdocl.diliclGetSamplernfol) + 12421

2N CodeX... ‘a Soluti... B Class... & CodeXL Function Calls History ER Autos B Locals & CodeXL Properties r:,-‘j Call Stack i' Breakpoints

Col 51

Ready

91 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



GPU DEBUGGING KEY FEATURES AND BENEFITS AMDZ1

4 Full integration with Visual Studio

— Now API-level debugging is
performed |nS|de the V|Sua| Stud|o 50 NBodyVS10 (Debugging) - Microsft Visual Studio (Administrator) R T T o1 |

File Edit View WVAssistX Project Build Debug CodeXL Team Data Tools Test CodeMaid Window Help

source editor. If OpenCL kernel source @ = r=d@ i da i o iie e e *ANE— |55 RERBAN-L 9|5 e|aq
. . . PP owo@ | SE(E He G |@- 0%k A R 200 PdB@IALTT HE ANO %MD DD -1 Workemx 0 | 2
Code .CI flles are Included In the Ce.DebuggingE:(pIorer MU NEody Kernels.cl ¢ [UERER
project, they will be identified and X o
used for kernel debugging. In addition, | .&Haon, il s v,

d m Buffers float deltaTime,

Visual Studio views such as the call B Command Queues FLORt SRS, ocaibo,

- r,' OpenCL Programs
4 r/' OpenCL Program 1 _ global fleat4™ newPositien,

stack view and locals view will be £ Kemell - b global floats* newvelocity)

unsigned int tid - get local id(@);

f.” d i h k I d b i unsigned int gid = get_global id(@);
I e Wlt erne e ugglng unsigned int localSize - get_local_;ize(ej;
. .
f // Number of tiles we need to iterate
In Ormatlon * unsigned int numTil;s = numBodies / localsize;

// position of this work-item
fleat4 myPos = pos[gid];
float4 acc = (float4)(e.ef, e.ef, e.ef, e.ef);

= I 3 Call Stack

MName Value Type =+ Mame
4 |ocalSize 256 % | unsigne— M- _OpenCL_nbedy_sim_kernel() Line 121
2 numTiles 4 % - ur15igr1et|E AMDOpenCLDebug.dlli0:0f712793()
= 5 myPos {0.000000, 0.000000, 0.000000, 0.000000} Qv floatd AMDOpenCLDebug.dll:0f712b3d()
0.000000 % -|float amdocl.dlllclGetSamplerdnfol) + 30760 bytes
0.000000 % -|float amdocl.dlllclGetSamplerdnfo() + 31337 bytes
0.000000 4 =|float amdocl.dlllclGetSamplernfol) + 954 bytes
0.000000 4 | float amdocl.dlllclGetSamplerdnfol) + 12421 bytes
1 CodeX... ﬁ Soluti... B Class.. odeXL Function Calls History B Autos _a Watch 1 & CodeXL Properties (,j [T I: Breakpoints

Ready

92 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



GPU DEBUGGING KEY FEATURES AND BENEFITS AMDZ1

A API statistics view

— Gives an overview of OpenCL and

OpenGL API usage, and more deta||ed b NBodyVS10 (Debugging) - Microsaft Visual Studio (Administrator) I T L u ... e |
File Edit View WVAssistX Project Build Debug CodeXl Team Data Tools Test CodeMaid Window Help

views, including unrecommended RGN T P R R =N Y R [T

=] RN GERRE - LS e [Ral
. . . b W@ D EEHx % Bl ab e R EE 2003 MR R NE[AND =% M55 5. wektemxp %
function calls (with alternative

. . aDebugging Explorer . CodeXL Statistics - CL Context 2 > @il
suggestions) and deprecated behavior. |- s s

[£] GL Context1 Function Types | Function Calls State Change Deprecated Function | Calls History Vertex Batches
D CL Context1 Functiocn Name % % of Calls
a [T CLContext 2
b m Buffers
[+ E Command Queues
- r,' OpenCL Programs
el r', OpenCL Program 1
S Kemell - nb... clCreateBuffer
clGetKernelWerkGrouplnfo Get | Program and Kernel
clGetContextInfo Get

Kernels.cl NBody.cpp

Functicn type
clSetkernelArg 5712 17,988 Program and Kernel

clFlush 14.28 4,496 Synchronization
clEnqueueReadBuffer

Buffer and Image | Queue
clEnqueueMDRangekernel

Queue | Program and Kernel

Buffer and Image

Buffer and Imaage | Queue

clEnqueuveReadBuffer

OpentL function

CodeXL Function Calls History - CL Context 2
===l

BEI|IEGE New~ | X | 15 [ & 9 |+ 2| Columns~ |

31,490 OpenCL function calls Name Labels Condition Hit Count

=) cisetKernelArg(PL Kemel 1, 0, 4, 0x2BFA20) L - ] clEnqueueNDRangeKernel (no condition)  break always (currently 5)
E] clSetkernelArg(P1 Kernel 1, 1, 4, 0x2BFA24)

o clEnqueueMDRangekernel (0x02ac9b38, P1 Kernel 1, 1, 0000000, {1024}, {256}, 0, 0:000...

L8N Breakpoints

21 CodeX... "a Soluti... E® Class.. 4 CodeXL Function Calls History s e - Nite1 _a Watch 1

Ready

& CodeXL Properties - W E=FIS [ Breakpoints

93 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



GPU DEBUGGING KEY FEATURES AND BENEFITS AMDZ1

4 Object visualization

— View and export OpenCL buffers and
Ima ges a nd OpenG L Textures a nd 00 URNGNoiseGLYS10 (Debugging) - Microsoft Visual Studio (Administrator) NI ~~ R T (= @ T=]

File Edit View VAssistX Project Build Debug CodeXL Team Data Tools Test CodeMaid Window Help
buffers as pictures or as spreadsheet | = =d&d cooin vy o i IS @EeBBa- ik Uls e

W@ >=E | % [ NE AN =% D CED S| Workltem: X |0 v z N

d ata . CodeXL Debugging Explorer MRl GL Context1 Front Buffer < [Raltee) CodeXL Statistics

arc Image view l—ml Image Information
4 @ No project loaded Front Buffer %
4 ;J GL Context1 (shared - CL2) Hovered Position: X: 254, Y: 109
1;\— Static Buffers
e
> 5 Textures
) m Vertex Buffer Objects b 7 Hovered Value:  R: 61, G: 77, B: 90
[ CL Context1
4 L CL Context 2 (shared - GL1) 5
"3 : 3 Y % Hovered Color:  R: 174, G: 219, B: 180, A: 255 I:l
> e Buffers o .
> B Command Queues e ] \ A | Selected Color:  R: 79, G: 107, B: 131, A: 255 -
43 OpenCL Programs :

v y Place the mouse pointer over the image pixel
e (E)penCL Programll ” . g | to view the texel information
=1 Kernell - noi...

Selected Position: X: 257, Y: 239

Selected Value:  R: 61, G: 77, B: 90

M Gl Call Stack

E | E 56 | Name o o : -
= URNGNoiseGL.exe}cI::CommandQueue::enqueueNDRangeKemelO Line 4771
11,519 OpenCL & OpenGL function calls RNGNoiseGL.exe!URNGNoiseGL::runCLKernels() Line 751
C  clGetEventInfo(0x02c519€0, CL_EVENT_COMMAND_EXECUTION_STATUS, 4, 0x0BF330,... | URNGNoiseGL.exelURNGNoiseGL::run() Line 1058
C  clGetEventinfo(0x02c519€0, CL_EVENT_COMMAND_EXECUTION_STATUS, 4, 0x0BF330,... o loiseGL.exe'main() Line 1699 ;

" ! ainCRTStartup() Line 278
C clReleaseEvent(0x02c519¢0) Sy : — — = -

21 CodeX... [ BTN - NG CLNN <2 CodeXL Function Calls History = NGElE - NEIIEN-- RUERSSE
Ready

94 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



GPU PROFILING KEY FEATURES AND BENEFITS

95

Collect OpenCL™ Application Trace

— View and debug the input parameters (=
and output results for all OpenCL™

API calls

— Search the API calls

— Navigate to the source code that

called an OpenCL™ API

— Specify which OpenCL™ APIs will be

traced

INTRODUCTION TO OPENCL |

OCTOBER 23, 2013

PUBLIC

08 AMDTTesPot - Microsoft Visual Studec

AMD 1

fle Edt Yiew Proect Buld Debug Lodm Tean Opta JTook Test MWindow Help

LA ESER b A - AN Y B -
SOy NE AN --Qll
Soluticn Explorer ~ 3 x
a2
A Soktion 'AMDTTeaPot’ (2 proects)
7] AMDTTeaPot

21 AMDTTeaPottib

27:54 - Apphcation Trace
Aug )J 2012 14:28:10 - GPU Performance Counters

Find Resuts 1 B Outpet

»| ¥ [ Debug - win32 = |1 {3 | getactionmenuitemparentment « -3 ¢ 3 T S BT - o
Apchcanen Trace
T T T 1["' T T S B A o e B e e e e B T
Wizecceds I " T e o082 072, | | ] | [ T | |
3643910 3651094 %53.269 e om %57.618 3659.793 3651.968 54,102 3%66.317 %65.402 %0667 %7.8Q ®75.016 3577191
Host
et Traad 364 II-E“_

|
I | |
Quaus [ - BeayerCraek (w05 1C7C40) |

Data Forafer yoe WRITEN m
et ot s e 2~ S

Host Theead 9164 | Summery

Index Interface Paramters Rewit Device Block Kernel Occupancy
2 fEnqueweNDRangeKerne w091 C7C40; 007 C2CT90; 1: NULL; (111} NULL; & NULL: NULL computelntercaction I7.50%

cfFinish 0091 '7L-m ’L QJCCESS
ck 7C 0 C CL COMMAND R,

4.0 MR COPY BUF.

seue Ruease GLOBjects

2840 clFlush CL_suc kESS
241 clfinish 01)31C7Ll0 ~L SUCCESS
»42 clEnqueweWriteBuller 0081 C7CA0; 0:00262E83; C1_FALSE; 0: 128: 0 C04; 0: NULL; NULL £S5

10000% -

GPU: Aug 30, 2012182810 x

Performance Counters

queie LL hULL

Rangekeme 0L91CTCAD: WO CI0200: 3 NULL: (64 8

¥ Srow 2ero Colurn

Method ExscutionOrder  ThreadiD  Callindex  GlobalWorkSize  WeekGroupSene Time LocalMerGize VGPRs SGPRs  ScratchRegs FCStacks  KeeneOccupanc: *
5  advectFisldvslocky &S BeaverCreekl 5 604 3 | &4 64 64 (64 ¢ 1) 080228 0 15 Na 0 0 2
6 apphiVelocityBounderyCondition k6 BesverCreek] 6 o pal) { &4 &4 64 (&40 ¢ 1) 097776 0 L] NA [ 0 120
7 somputsFiekiPressurePrep &7 BeaverCreek] 7 604 s | 648 64 64} (64 & 1) 103408 ) 9 NA 0 0 F53




GPU PROFILING KEY FEATURES AND BENEFITS AMDZ1

4 Collect GPU Performance Counters
of AMD Radeon™ graphics cards
— Show kernel resource usage

— Show the number of instructions
executed by the GPU

— Show the GPU utilization

— Show the GPU memory access
characteristics

— Measure kernel execution time

Performance Counters |
Shaw Zero Column
M&hod ExecutionOrder  ThreadID  Calllndex GlobalWorkSize WorkGroupSize Time LocalMemSize VWGPRs SGPRs  ScratchRegs FCStacks  KemnelOccupancy  ALUBusy (%) |2
1  applySources kl BeaverCreekl 1 604 269 { 64 84 1} { 64 4 1} 0.03500 0 7 NA 0 0 100 2335
2 applyBuoyancy k2 BeaverCreekl 2 604 270 { 64 b4 04} {64 4 1} 0.81560 0 4 NA 0 0 100 22.28
3 calculateCurld k3 BeaverCreekd 3 604 271 { 64 64 64} {64 4 1} 1.20496 0 g NA 0 0 15 15.54
4 applyVerticity k4 BeaverCreekl 4 604 272 { 64 64 64) {64 4 1} 1.72332 0 5 NA 0 2 100 8582
5 advectFieldVelocity k5 BeaverCreekl 5 604 273 { 64 b4 B4} {64 4 1} 0.80228 0 15 NA 0 0 50 5460
6  applyVelocityBoundaryCondition kb BeaverCreekl 6 604 274 { 64 b4 04} {64 4 1} 0.97776 0 4 NA 0 0 100 1285
7 computeFieldPressurePrep k7 BeaverCreekl 7 604 275 I 64 B4 64} {64 4 1} 1.03408 0 9 MNA 0 0 5 24 .89
% computeFieldPressurelter k& BeaverCreekl - 8 604 276 P64 B4 641 64 4 1) 0.37424 0 7 MA 0 0 100 76.58 . o

96 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



GPU PROFILING KEY FEATURES AND BENEFITS

OpenCL™ Timeline visualization
— Visualize the application high level

GPU: Aug 30, 2012 14:27:54

Application Trace Kernel Occupancy (computelntersection) || |

AMD 1

structure
Miliseconds 36-;-9 gl??l !.;65136I1 - ;652|?4; - 3554 133{.5}4'%01' 3555.515 | '4.%55.265%'0 - El.ess ZBSIESSI'BE:E ;659 sslg I:-'.6I61It154
— Visualize kernel execution and data - ' | ' ' ' ' ' : '
tra nsfer operations Host Thread 9164 ||||||
= OpenCL

— Visualize host code execution

ElContext 0 {0x07C3CCAS)

I 2 Queue 0 - BeaverCreek (0x091C7C40)

97 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC

Data Transfer

Kernel Execution

3.0 Byte WRITE_BURFH

plyBuoyan

calculateCurll

applyVortidty ectFieldveloityBoundareFieldPressudr

dPldPdd

] = r
Host Thread 9164 Summary
Index Interface Parameters Result Device Block Kernel Occupancy =
clEnqueueMNDRangeKermnel 0pe191 CTCAD; Ol 7 C2CT90: 1: NULL: [112]; MULL: 0: MULL: NULL CL SUCCESS computelntersection 37.50%
2835 clFinish 0091 CTC40 CL_SUCCESS )
2836 clEnqueueReleaseGLObjects 0091 C7C40; 1; [0x07BF8418]; 0; WULL; MULL CL_SUCCESS CL COMMAND RE... U
2837  clEnqueuelcquireGLObjects  0x:091C7C40; 1; [0x09105240]; 0; MULL; MULL CL_SUCCESS
2838 clEnqueueCopyBufferTolmage 0091 C7C40; 009262578, 0:09105240; 0; [0,0,0]; [64,64,64]: 0; NULL; MULL  CL_SUCCESS 4.0 MB COPY BUFF...
2839 clEnqueueReleaseGLObjects 0091 C7C40; 1; [0:09105240]; 0; MULL; MULL CL_SUCCESS
2840 clFlush 0091 CT 240 CL_SUCCESS
2841  clFinish 0091 C7C40 CL_SUCCESS
2842 clEnqueueWriteBuffer (00091 C7C4A0; 0x09262E88; CL_FALSE; 0; 128; 0:02576C04; 0; MULL; MULL CL_SUCCESS  128.0 Byte WRITE B...
2843 clEnqueueMDRangeKernel (k091 C7CA0; 007 C2D2D0; 3; NULL; [64,64.1]; [64,4 1]: 0; MULL; MULL CL_SUCCESS applySources 100.00% i




GPU PROFILING KEY FEATURES AND BENEFITS AMDZ1

A4 OpenCL™ Application Summary
pages
— Find incorrect or inefficient usage of

the OpenCL™ API using the OpenCL™
analysis module

— Find the API hotspots

— Find the bottlenecks between kernel
execution and data transfer

operations
— Find the top 10 data transfer and B
kernel execution operations Summary

[ Previous ] | Mext |[COﬂtE](tSU.ITLITla!]|' v]

# of Kernel Total Kernel # of Total Total Size Total Total
#of #of . o #of . o
Buff I Dispatch - Time(ms) - Memory Memory d : o Write of Map Copy
ers  Images ,
BeaverCreek BeaverCreek Transfer Time(ms) Time(ms) Write Time(ms) Time(ms)
0 14 0 8910 2955.54326 492 B12.61090 | 0 0 0 330 553.07370 11.06 0 0 0 162 259.53720 648.00
Byte MB Byte MEB
Total 14 0 8310 2955.54326 492 B12.61050 | 0 i] 0 330 553.07370 11.08 0 0 0 162 259.53720 648.00
Byte MB Byte MEB

98 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC




GPU PROFILING KEY FEATURES AND BENEFITS AMDZ1

4 OpenCL™ Kernel Occupancy Viewer [ oo cmemin @ |

Number of waves limited by Work-group size NMumber of waves limited by VGPRs Mumber of waves limited by LDS
38 38 38

— Calculates and displays a kernel
occupancy number, which estimates
the number of in-flight wavefronts on
a compute unit as a percentage of the \\__\
theoretical maximum number of - -
wavefronts that the compute unit can vk s i  bunberor v | s “
support

28

Murnber of active wavefronts
MNumber of active wavefrants
Mumber of active wavefrants

— Find out which kernel resource (GPR R —— .

Max number of work-groups per compute unit B

usage, LDS size, or Work-group size) is Voot e 64
currently limiting the number of in-

Vector GPR usage per work-item 16 248

flight wavefronts L5 s pr vorcroo ;

Flattened work-group size 256 256

111 16777216

— Displays graphs showing how kernel i . .

Number of waves per work-group

OCC u pa n Cy Wo u I d be affeCted by Number of waves limited by Vector GPR and Work-group size 12 32

. Number of waves limited by LDS and Work-group size 32 k¥l

Cha nges In eaCh kernel resou rce Number of waves limited by Work-group size 3z 32
Limiting factor(s) VGPR
Estimated occupancy 37.5%

99 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



STATIC KERNEL ANALYSIS — KEY FEATURES AND BENEFITS AMDZ1

.
. . 21 AMD APP KernelAnalyzer2 =NRCl X
4 Compile, analyze and disassemble the et B _ele |
OpenCL kernel and supports multiple o) CEETEE
45 float invDist = 1.8f / sqri(distSqr + epssSqr); -
d . 45 float invDistCube = invDist * invDist * invDist; 15h | Tehiti IL | Tahiti ISh | Terks IL | Twrks ISh | WinterPark IL | WinterPark ISh |4
G PU evice ta rgetS. 22 float s = p.w * invDistCube; 1 ShaderType = IL_SHADER_COMPUTE -
o - . 2 TargetChip = ¢
43 // sccumulate effect of all particles 3 e e SC_SRCSHADER DUmp ===~
. . . £ acc.yz 4= 5 ¥ roayz; 4 SC_SHADERSTATE: u3ZNumIntvsConst = @
A View any kernel compilation errors and S § SCSWOERSTATE: LdlumintPSconst - o
. I . . . 6 SC_SHADERSTATE: u32NumIntGSConst = @
. 53 B for (1 < numBodies; it+) { 7 SC_SHADERSTATE: u32NumBoolVsConst = ©
wa rnlngs generated by the OpenCL 54 floats p = pos[i]; 5 SC_SHADERSTATE: u32ZNumBoolPSConst = ©
-2 9 SC_SHADERSTATE: u32NumBoolGSConst = @
. 56 floats r; 18 SC_SHADERSTATE: u32NumFloatVsConst = @
ru ntlme = raXyz = pxyz - myPos.yz; . . 11 SC_SHADERSTATE: u32NumFloatPsConst = @
. 58 float distSqr = r.x * rox + ry *ry + r.z*roz; 12 SC_SHADERSTATE: u32NumFloatGSConst = @
o L . 13 fConstantsAvailable = &
60 float invDist = 1.8f / sqrt(distSqr + epssqr); 14 iConstantsfvailable = -1
. . 61 float invDistCube = invDist * invDist * invDist; 15 bConstantsavailable = @
‘ VIeW the AM D |ntermed|ate La nguage & float s = p.w ™ invDistCube; 16 u325COptions[e] = ©x00550008 SCOption IGNORE_SAMPLE_L BUG SCOption FLOX
= ; L 17 u325COptions[1] - @x5083086@ SCOption R6G@_ERROR_ON_DOUBLE_MEMEXP SCOpt
64 // accumulate effect of all particles 12 u325COptions[2] = @x@EEE4111 SCOption REXX_CF_ALU_STACK_ENTRY WORKAROUD
(IL) COde generated by the OpenCL run- E; , acc.xyz += s * r.xyz; 19 u325COptions[3] = @x003@e00e SCOption SELECTIVE INLINE
=la] 20
. = e . 21 3 ommmmmee- Disassembly -------------ooooooo
tlme &8 floatd oldVel - vel[gid]; 22 @ ALU: ADDR(32) CNT(14) KCACHER(CBL:@-15) KCACHEL(CBB:@-15)
. 69 - 23 2 x: MOV R17.x, @.0f
7@ // updated position and velocity 24 yi MOV R17.y, @.8f
B floatd newPos; . 25 z: SETGT_INT  Re.z, 9, Kc@[2].x
H 72 newPos.xyz = myPos.xyz + oldvel.xyz * deltaTime + acc.xyz * @.57 * delt 26 £ MOV R16.x, ©.8F
View the ISA code generated by the 7 newpos = myPos i = | S
7 28 t: MULLO_INT , Rl.x, KC1[1].x
AM D h d C I 75 float4 newvel; . ) 29 2 w: ADD_INT , Re.x, PSl
S a er Ol I Ipl er. 76 newVel.xyz = oldvel.xyz + acc.xyz * deltaTime; 30 3 z: ADD INT , PV2.w, KCL[5].x
7 newvel.w = oldVel.w; 3 4w LSHL Rl6.w, PV3.z, 4
o o 32 5 y: ADD_INT , KCe[e].x, PVd.w
. . . L. 79 // write to global memory 33 5 x: LSHR RO.x, PVs.y, 4
4 View various statistics generated by 2| reeesitionigld] - nevpors 2 e e abonGe) any
8l newvelocity[gid] = newvel; 35 7 VFETCH R18, R@.x, fcl75 FORMAT(32 32 32 32 FLOAT) MEGA(15)
82 “} - 36 FETCH TYPE(NO TNDEX OFFSET)

analyzing the ISA code. T :

| #nclysis input | Output | Statisties | Analysis

OpenCL Compile Message - Compiling for device: Turks

4 View General Purpose Registers and O s S ey (e

spill registers allocated for the kernel. o e e o g e ek

Unrolled as requested!

100 | INTRODUCTIONTO OPENCL| OCTOBER23,2013 | PUBLIC




LANGUAGE BINDING

AMD 1

Language Binding Tools: allows you to write the OpenCL host code in your own programming language. The OpenCL kernels you use
are still written in the OpenCL language.

C

Fortran

Java
Matlab

.NET

Python

*Calseum (for ATI CAL)
*HMPP Workbench from CAPS entreprise
eLibra SDK from GPU Systems

*HMPP Workbench from CAPS entreprise

*JavaCL

«IPT_ATI_PROJECT

eLibra SDK from GPU Systems
*OpenCL .Net

*OpenTK

*Clyther

*PyGWA (for ATI CAL)
*PyOpenCL

*Pythoncl

Kernel Translation Tools: additionally allow you to write the kernel itself in your own programming language. The tools then translate
your kernel to the OpenCL language.

Java
Scala

*Aparapi
*ScalaCL

101 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



AGENDA AMDZ1

A4 \What’s OpenCL

A4 Fundamentals for OpenCL programming
A OpenCL programming basics

A OpenCL programming tools

4 Demos

102 | INTRODUCTIONTO OPENCL| OCTOBER23,2013 | PUBLIC



DATACENTER WORKLOAD AMDZ1

MEMCACHED

A Distributed Memory Object Caching System Used in Cloud Servers

A Generally used for short-term storage and caching, handling requests that would otherwise require
database or file system accesses

h

Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others

h

Effectively a large distributed hash table
— Responds to store and get requests received over the network
— Conceptually:

— store(key, object)

— object = get(key)

103 | INTRODUCTIONTO OPENCL| OCTOBER23,2013 | PUBLIC



OFFLOADING MEMCACHED KEY LOOKUP TO THE GPU AMDZ1

Key Look Up Performance Execution Breakdown
4 100%
80%
3
60%
2
40%
1 _
20%
0 0
Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350
® Data Transfer = Execution

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,” Proceedings of the 2012 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS 2012), April 2012.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

104 | INTRODUCTIONTO OPENCL| OCTOBER23,2013 | PUBLIC


http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

SUMMARY AMDZ1

A

OpenCL is an open standard for programming on heterogeneous computing platforms

A

OpenCL programming requires

— Parallel computing thinking

— GPU architecture knowledge for performance consideration

— Deep understanding of OpenCL architecture to control devices

4 OpenCL key concepts
— Platform, device, context
— Command queue, buffer/image, data copying, program, Kernel, Kernel execution

A OpenCL programming tools
— Code XL

A Next day
— GPU architecture
— Kernel optimization
— OpenCL application optimization

105 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



\_N

THANKS!.




DISCLAIMER & ATTRIBUTION AMDZ1

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD

reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of
such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE
LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION
CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. SPEC is a registered trademark of the Standard Performance Evaluation Corporation (SPEC). Other names
are for informational purposes only and may be trademarks of their respective owners.

107 | INTRODUCTIONTO OPENCL | OCTOBER 23,2013 | PUBLIC



